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Abstract

This paper studies the nonlinear stochastic partial differential equation of fractional orders both in space
and time variables:(

∂β +
ν

2
(−∆)α/2

)
u(t, x) = I γt

[
ρ(u(t, x))Ẇ (t, x)

]
, t > 0, x ∈ Rd ,

where Ẇ is the space–time white noise, α ∈ (0, 2], β ∈ (0, 2), γ ≥ 0 and ν > 0. Fundamental
solutions and their properties, in particular the nonnegativity, are derived. The existence and uniqueness
of solution together with the moment bounds of the solution are obtained under Dalang’s condition:
d < 2α +

α
β min(2γ − 1, 0). In some cases, the initial data can be measures. When β ∈ (0, 1], we prove

the sample path regularity of the solution.
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1. Introduction

In this paper, we study the following nonlinear stochastic space–time fractional diffusion
equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
∂β +

ν

2
(−∆)α/2

)
u(t, x) = I γt

[
ρ (u(t, x)) Ẇ (t, x)

]
, t > 0, x ∈ Rd .

u(0, ·) = µ if β ∈ (1/2, 1],

u(0, ·) = µ0,
∂

∂t
u(0, ·) = µ1 if β ∈ (1, 2) ,

(1.1)

with α ∈ (0, 2] and γ > 0. In this equation, ∆ =
∑d

i=1 ∂
2/(∂x2

i ) is the Laplacian with respect
to the space variables and (−∆)α/2 is the fractional Laplacian. Ẇ denotes the space–time white
noise. ν > 0 is the diffusion parameter. The initial data µ, µ0 and µ1 are assumed to be some
measures. ρ is a Lipschitz continuous function. ∂β denotes the Caputo fractional differential
operator:

∂β f (t) :=

⎧⎪⎪⎨⎪⎪⎩
1

Γ (m − β)

∫ t

0
dτ

f (m)(τ )
(t − τ )β+1−m

if m − 1 < β < m,

dm

dtm
f (t) if β = m ,

and I γt is the Riemann–Liouville fractional integral of order γ > 0:

I γt f (t) :=
1

Γ (γ )

∫ t

0
(t − s)γ−1 f (s)ds, for t > 0,

with the convention I 0
t = Id (the identity operator). We refer to [18,31,33] for more details of

these fractional differential operators.
This paper is motivated by some special cases of Eq. (1.1) studied in the literature.

(1) When d = 1, α = 2 and γ = ⌈β⌉ − β, where ⌈β⌉ denotes the smallest integer not less
than β, this equation was studied by the first author [4], who proved the existence of a
mild solution for all β ∈ (0, 2). The motivation comes from the study of diffusions in
the viscoelasticitic media (a media between fluids and solids, such as honey or rubber)
perturbed by a multiplicative noise. In the absence of noise, we refer to the work
[19,25,32]. Notice that the role of the fractional integral operator I γt is to make the
noise term more regular. When this smoothing factor disappears (namely γ = 0), the
solution becomes less regular. In this case one can show that the mild solution exists only
when β ∈ (2/3, 2]. On the other hand, motivated by modeling the molecular motion in
biological cell, the special case α = 2, β ∈ (0, 1) and γ = 0 of Eq. (1.1) was studied
in [9,21]. The dimension can be general and the noise is a colored one. We refer to the
references in [21] for more biological application when the noise is absent. One may find
more interesting motivations in recent work [13,27,28].

(2) The above case is for time fractional (general β). The spatial fractional one (general α,
fractional Laplacian) is a classical subject in probability theory. The special case when
β = 1, γ = 0 of Eq. (1.1) has been studied in literature. We refer to [8,11] and the
references therein.

It is worth pointing out the following two famous special cases of our equation.
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(3) When d = 1, β = 2, α = 2 and γ = 0, the spde (1.1) reduces to the stochastic wave
equation (SWE) on R:(

∂2

∂t2 −
ν

2
∂2

∂x2

)
u(t, x) = ρ(u(t, x))Ẇ (t, x) , (1.2)

with the speed of wave propagation (ν/2)1/2.
(4) When d = 1, β = 1, α = 2 and γ = 0, the spde (1.1) reduces to the stochastic heat

equation (SHE) on R:(
∂

∂t
−
ν

2
∂2

∂x2

)
u(t, x) = ρ(u(t, x))Ẇ (t, x) . (1.3)

These two special cases (3) and (4) have been studied extensively and there are many references.
Among them let us mention [3,5–7,14,15,17,20]. The spde (1.1) for β ∈ (0, 1] and γ = 1−β has
been recently studied in [27,28]. When the noise does not depend on time, a similar model with
a general elliptic operator has been studied in [21]. Another related equation is the stochastic
fractional heat equation (SFHE) on R:(

∂

∂t
− x Dα

δ

)
u(t, x) = ρ(u(t, x))Ẇ (t, x) , (1.4)

which has been studied recently in [8,12] under the setting of α ∈ (1, 2] and |δ| ≤ 2−α; see also
[17,20]. Here x Dα

δ is the general (asymmetric) stable operator with α ∈ (0, 2] and the skewness
parameter δ such that |δ| ≤ min(2 − α, α). In particular, x Dα

0 = −(−∆)α/2.
The goal of this paper is to unify the above mentioned special equations. There are two

considerations for our unification: one is that the unified equation should be general enough
to cover all the mentioned cases; the second one is that the equation should also be sufficiently
specific so that we can solve it. We found that Eq. (1.1) meets both of these goals.

One motivation for us to find such a unified theory is that we may be able to apply some ideas
from the study of one special equation to the study of other special equations. However, in this
work we shall concentrate on the existence, uniqueness and sample regularity of the solution.

To solve the general equation (1.1) we shall first find its corresponding Green’s functions. As
proved in the next sections, there is a triplet{

Z (t, x), Z∗(t, x) , Y (t, x) : (t, x) ∈ [0,∞) × Rd } ,
depending on the parameters (α, β, γ, ν), such that the solution to (1.1) with ρ(u(t, x))Ẇ (t, x)
replaced by a continuous function f (t, x) with compact support is represented by

u(t, x) =

{
(Z (t, ·) ∗ µ)(x) + (Y ⋆ f ) (t, x), if β ∈ (0, 1],
(Z∗(t, ·) ∗ µ0)(x) + (Z (t, ·) ∗ µ1)(x) + (Y ⋆ f ) (t, x), if β ∈ (1, 2),

(1.5)

where “∗” denotes the convolution in the space variable:

(Z (t, ·) ∗ µ)(x) :=

∫
Rd

Z (t, x − y)µ(dy), (1.6)

and “⋆” denotes the convolution in both space and time variables:

(Y ⋆ f )(t, x) :=

∫ t

0

∫
Rd

Y (t − s, x − y) f (s, y)dsdy.

The difficulty to solve (1.1) comes from the complexity of the Green’s functions, which are
expressed by using the Fox H-functions [22]. This special function is much more complex than
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the heat kernels associated with the Laplacian or fractional Laplacians. To get a sense of our idea
let us explain our approach to consider the problem of estimating the second moment. As we
shall see very soon, this boils down to finding an effective estimation of the following space–time
convolution∫ t

0

∫
Rd

Y 2(t − s, x − y)Y 2(s, y)dsdy,

in a way that one can do it recursively. The new and key idea to achieve this in this paper is to
bound the function (t, x) ↦→ Y 2(t, x) from above (resp. below) by some known kernel functions
that satisfy the semigroup property, specifically by the heat kernel type or Poisson kernel type
functions (see (3.7)). For the upper bound, one may need x ↦→ Y (1, x) to be bounded; for the
lower bound, one may need this function to be nonnegative.

If we denote the solution to the homogeneous equation of (1.1) by J0(t, x), i.e.,

J0(t, x) =

{
(Z (t, ·) ∗ µ) (x) if β ∈ (0, 1],
(Z∗(t, ·) ∗ µ0) (x) + (Z (t, ·) ∗ µ1) (x) if β ∈ (1, 2),

(1.7)

then the rigorous meaning of (1.1) is the following stochastic integral equation:

u(t, x) = J0(t, x) + I (t, x), where

I (t, x) =

∫∫
[0,t]×R

Y (t − s, x − y) ρ (u(s, y))W (ds, dy).
(1.8)

The stochastic integral in the above equation is in the sense of Walsh [36].

1.1. Existence and uniqueness

To establish the existence and uniqueness of random field solutions to (1.1), the first step is to
check Dalang’s condition [16]:∫ t

0
ds
∫
Rd

dy |Y (s, y)|2 < ∞, for all t > 0,

which is equivalent to the following condition (see Lemma 5.3):

d < 2α +
α

β
min(2γ − 1, 0) =: Θ, (1.9)

which is also equivalent to

β + γ >
1
2

(
1 +

dβ
α

)
and d < 2α. (1.10)

In the following, we will call these two equivalent conditions (1.9) and (1.10) Dalang’s condition,
which are assumed throughout of the paper.

Note that (1.10) implies that the space dimension should be less than or equal to 3. Among all
possible cases in (1.9), the following two special cases have better properties:

γ = 0 or α > d = 1, (1.11)

α > d = 1. (1.12)

Clearly, case (1.12) is a special case of (1.11). As shown in Lemma 4.3 and Remark 4.4, under
(1.11), the function x ↦→ Y (1, x) is bounded near zero and hence bounded for all x ∈ Rd . We
rely on this property to implement a procedure of bounding Y 2(t, x) from above by the heat-type
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or Poisson-type kernel functions. If we strengthen the condition from (1.11) to (1.12), then all
functions Z (1, x), Z∗(1, x) and Y (1, x) are bounded near zero. Since Z (1, x) and Z∗(1, x) get
involved in the equation only through the initial data (see (1.7)), this boundedness property of
Z (1, x) and Z∗(1, x) near zero allows the initial data to be unbounded near zero, for example,
in this case one may allow the initial data to be the Dirac delta measure (distribution). The
differences between these conditions are manifested in full details through the three cases –
Cases I, II and III – below.

We prove the existence and uniqueness of random field solutions to (1.8) in the following
three cases:

Case I: If we assume only Dalang’s condition (1.9), we prove the existence and uniqueness
when the initial data are such that

sup
(s,x)∈[0,t]×Rd

|J0(s, x)| < ∞, for all t > 0, (1.13)

which is satisfied, for example, when initial data are bounded measurable functions.

Case II: Under both (1.9) and (1.11), we obtain moment formulas that are similar to those
in [4,7,8]. The initial data satisfy (1.13).

Case III: Under both (1.9) and (1.12), the initial data can be measures. Let M(R) be the set of
signed (regular) Borel measures on R. For x ∈ R, define an auxiliary function

fβ(η, x) := exp
(
−η |x |

1+⌊β⌋
)
, (1.14)

where ⌊β⌋ is the largest integer not greater than β. Note that the difference between ⌈β⌉ and
⌊β⌋ + 1 for β ∈ (0, 2) is only at β = 1. The initial data are assumed to be Borel measures such
that ⎧⎨⎩

(
|µ| ∗ fβ(η, ·)

)
(x) < ∞, for all η > 0 and x ∈ R, if α = 2,

sup
y∈R

∫
R

|µ|(dx)
1

1 + |x − y|
1+α

< +∞, if α ∈ (1, 2), (1.15)

where for any Borel measure µ, µ = µ+ −µ− is the Jordan decomposition and |µ| = µ+ +µ−.
We use Mα,β(R) to denote these measures. In this case, we prove the existence and uniqueness
of a solution to (1.4) for all initial data from Mα,β(R).

Here are some special cases:

(1) For (1.3), i.e., α = 2, β = 1 and γ = 0, the set of admissible initial data studied in [7] is
MH (R), which corresponds to M2,1(R) in this paper.

(2) Under the condition that d = 1, α = 2, β ∈ (0, 2), γ = ⌈β⌉ − β (as in [4]), one can
easily verify that condition (1.9) is always true. The possible initial data is Mβ

T (R), which
corresponds to M2,β(R) in this paper.

(3) If γ = 1 − β and β ∈ (0, 1), then it is ready to see that (1.9) reduces to

d < αmin(2, β−1),

which recovers the condition by Mijena and Nane [27].
(4) If γ = 0, then (1.9) becomes

d
α

+
1
β
< 2.

Moreover, if α = 2 and d = 1, then this condition becomes β > 2/3, which coincides to
the condition in [13, Section 5.2].
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(5) If β = 1 and γ = 0, then Dalang’s condition (1.9) reduces to α > d . Since α ∈ (0, 2], we
have that α ∈ (1, 2] and d = 1, which recovers the condition in [8].

As in [6–8], we will obtain similar moment formulas expressed using a kernel function K(t, x)
when (1.11) is satisfied. For the SHE and the SWE, this kernel function K(t, x) has explicit forms.
But for the SFHE [8], (1.1) with d = 1, γ = ⌈β⌉ − β and α = 2 in [4], and the current spde
(1.1), we obtain some estimates on it. In particular, we will obtain both upper and lower bounds
on K(t, x).

1.2. Hölder regularity

After establishing the existence and uniqueness of the solution, we will study the sample-path
regularity for the slow diffusion equations (i.e., the case when β ∈ (0, 1]) with γ ∈ [0, 1 − β].
Given a subset D ⊆ [0,∞) × Rd and positive constants b1, b2, denote by Cb1,b2 (D) the set of
functions v : [0,∞) ×Rd

↦→ R with the following property: for each compact set K ⊆ D, there
is a finite constant C such that for all (t, x) and (s, y) ∈ K ,

|v(t, x) − v(s, y)| ≤ C
(
|t − s|b1 + |x − y|

b2
)
. (1.16)

Denote

Cb1−,b2−(D) := ∩α1∈ (0,b1) ∩α2∈ (0,b2) Cα1,α2 (D) .

We will show that for slow diffusion equations with γ ∈ [0, 1 − β], if the initial data has a
bounded density, i.e., µ(dx) = f (x)dx with f ∈ L∞(Rd ), then

u(·, ·) ∈ C 1
2 (2(β+γ )−1−dβ/α)−, 1

2 min(Θ−d,2)−

(
(0,∞) × Rd) , a.s., (1.17)

where Θ is defined in (1.9).

Example 1.1. When γ = 0, α = 2 and d = 1, Dalang’s condition (1.9) becomes β > 2/3. The
exponents b1 and b2 in (1.16) become

b1 =
3β − 2

4
and b2 =

3
2

−
1
β
.

Both b1 and b2, viewed as functions of β ∈ (2/3, 1], are nondecreasing, i.e., the more derivative
one takes in ∂β , the more regularity of the solution one obtains. So ∂β plays a regularization role.

Example 1.2. When γ = 1 − β, α = 2 and d = 1, the exponents in (1.16) reduce to

b1 =
2 − β

4
and b2 =

[(
1
β

−
1
2

)
∧ 1

]
=

{
1 if β ∈ (0, 2/3],
1/β − 1/2 if β ∈ (2/3, 1],

which recover the temporal Hölder exponent in Theorem 3.2 of [4] and improve the spatial
Hölder exponent obtained in the same reference from 1/2 to b2. It is clear that 1/2 ≤ b2 ≤ 1 for
β ∈ (0, 1] and when β = 1, b2 = 1/2, which recovers the classical results; see [5,36]. Contrary
to the previous Example 1.1, with the presence of the smoothing operator I γt both exponents b1

and b2, viewed as functions of β, are nonincreasing, i.e., the larger is β, the less regularity of the
solution we have. This means that regularization factor I 1−β

t (noticing the negative sign in the
exponent β) plays a more important role than the regularization factor ∂β .
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1.3. Moment Lyapunov exponents and intermittency

When the initial data are spatially homogeneous (i.e., the initial data are constants), so is the
solution u(t, x), and then the moment Lyapunov exponents

m p := lim sup
t→∞

1
t

logE
[
|u(t, x)|p] , (1.18)

m p := lim inf
t→∞

1
t

logE
[
|u(t, x)|p] , (1.19)

do not depend on the spatial variable. In this case, a solution is called fully intermittent if m1 = 0
and m2 > 0 (see [2, Definition III.1.1, on p. 55]). As for the weak intermittency, there are various
definitions. For convenience of stating our results, we will call the solution weakly intermittent
of type I if m2 > 0, and weakly intermittent of type II if m2 > 0. Clearly, the weak intermittency
of type I is stronger than the weak intermittency of type II, but weaker than the full intermittency
by missing m1 = 0. The weak intermittency of type II is used in [20].

The full intermittency for the SHE and the SFHE are established in [1] and [12], respectively.
The weak intermittency of type I and II for SWE are proved in [6] and [14, Theorem 2.3],
respectively. We will establish the weak intermittency of type II for both slow and fast diffusion
equations. For some slow diffusion equations, we will prove the weak intermittency of type I.
Moreover, we show that

m p ≤ C p1+
1

2(β+γ )−1−dβ/α . (1.20)

It reduces to the following special cases:

(1) The SHE case, i.e., β = 1, α = 2, γ = 0 and d = 1: m p ≤ C p3. See [1,7,20];
(2) The SWE case, i.e., β = 2, α = 2, γ = 0 and d = 1: m p ≤ C p3/2. See [6];
(3) The SFHE case, i.e., β = 1, γ = 0 and d = 1: m p ≤ C p2+1/(α−1). See [8];
(4) The time-fractional diffusion equation case as in [4] that α = 2, γ = ⌈β⌉ − β and d = 1:

m p ≤ C p
4⌈β⌉−β

4⌈β⌉−2−β ;
(5) The time-fractional spde as in Theorems 3.11 and 3.13 of [9] with d = 1 and κ = 13:⎧⎨⎩m p ≤ C p

2α−β
2α−β−α when γ = 0,

m p ≤ C p
2α⌈β⌉−β

2α⌈β⌉−β−α when γ = ⌈β⌉ − β.

In general, meaningful lower moment bounds are usually harder to obtain than the upper
bounds. Much more effort is required, especially in our general framework. One of the key
ingredients that we need for the lower bounds is the nonnegativity of Y , which we are able
to prove in this paper for the following cases:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Case I: α ∈ (0, 2], β ∈ (0, 1), d ∈ N, γ ≥ 0,
Case II: α ∈ (0, 2], β = 1, d ∈ N, γ ∈ {0} ∪ (1,∞),
Case III: 1 < β < α ≤ 2, d ≤ 3, γ ≥ 0,
Case IV: 1 < β = α < 2, d ≤ 3, γ ≥ (d + 3)/2 − β;

(1.21)

see Theorem 4.6. These results, which generalize those obtained by Mainardi et al. [26],
Pskhu [32], and Chen et al. [9], have their own interest. Based on this nonnegativity property,

3 In [9], the constant κ is the exponent for the Riesz kernel, and the case κ = 1 corresponds to the space–time white
noise.
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we can carry out the procedure of bounding Y 2 from below by some reference kernel functions,
similar to that for the upper moment bounds, to derive some satisfactory lower moment bounds.

1.4. Some comments

After introducing our main results we elaborate in more details about the smoothing effect of
the fractional operator I γt , which can be seen from the following three aspects: Firstly, for the
existence and uniqueness of solution, we can see immediately that the larger is γ , the larger is
the domain of α and β, for which Dalang’s condition (1.9) is satisfied. Secondly, for the Hölder
regularity (1.17), the exponents both in time and space are nondecreasing functions of γ , i.e., the
large is γ , the more regular is the solution. Lastly, from the upper bound of the moment Lyapunov
exponents in (1.20), we see that the larger is γ , the smaller is the upper bound, hence the less
intermittent is the solution.

We would like to highlight some contributions of this paper here. Firstly, to the best of our
knowledge, this is the first time that the SPDE (1.1) of this generality has been ever studied.
This equation not only contains some very interesting known equations but also covers new
ones. For example, while in the literature γ is set to be either 0 or ⌈β⌉ − β, in this paper, γ
can be any positive real values. Secondly, from the methodology point of view, we give a way
to handle equations that do not satisfy the semigroup property (i.e., the case when β ̸= 1) by
comparing with known semigroup kernel functions, through which we obtain upper and lower
moment bounds. It turns out this is a very robust, though not necessarily sharp, method that may
be applied to other SPDE’s, for example, the same SPDE as in this paper with a more general
Gaussian noise. Thirdly, the nonnegativity of the fundamental solution is established for all cases
in (1.21), which generalizes recent results by Pskhu [32] and Chen et al. [9]. The proof is very
technical where we have used some ideas from Pskhu [32]. Lastly, even in such generality, we are
still able to prove many fine properties of the solution, beyond the existence and uniqueness of
the solution, such as sample path regularity for the slow diffusion case, upper and lower moment
bounds, intermittency, etc.

Finally, we list several open problems for future investigation.

(1) The Hölder regularity is proved for β ∈ (0, 1] (slow diffusion case) with the constraint
γ ∈ [0, 1 − β]. It is interesting to study the case γ > 1 − β. A more challenging problem
is the regularity when β ∈ (1, 2] (fast diffusion case). It seems that almost none is known
except for the case of the stochastic wave equation (i.e., α = β = 2, d = 1, γ = 0); see
e.g. Theorem 4.2.1 of [3].

(2) Sample path comparison principle plays a vital role in the study of the stochastic heat
equation; see [12,29]. One would expect this principle continues to be true for the slow
diffusion case β ∈ (0, 1]. A related and more ambitious problem is to establish the
existence and smoothness of the density of the random variable u(t, x) with both t and
x fixed; see [10] for a special case.

(3) Even though the PDE part of the SPDE studied in this paper takes a very general form,
the noise is very special, that is, Ẇ is the space–time white noise. One may investigate
this same SPDE (possibly for the linear case ρ(u) = λu) with a general colored Gaussian
noise Ẇ .

This paper is structured as follows. In Section 2 we first give some notation and preliminaries.
The main results are stated in Section 3. The fundamental solutions are studied in Section 4.
The proof of the two existence and uniqueness theorems are given in Section 5. Finally, in the
Appendix, we prove some properties of the Fox H-functions.
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2. Some preliminaries and notation

Let W =
{
Wt (A) : A ∈ Bb

(
Rd
)
, t ≥ 0

}
be a space–time white noise defined on a complete

probability space (Ω ,F , P), where Bb
(
Rd
)

is the collection of Borel sets with finite Lebesgue
measure. Let

Ft = σ
(
Ws(A) : 0 ≤ s ≤ t, A ∈ Bb

(
Rd))

∨ N , t ≥ 0,

be the natural filtration augmented by the σ -field N generated by all P-null sets in F . We use
||·||p to denote the L p(Ω )-norm (p ≥ 1). In this setup, W becomes a worthy martingale measure
in the sense of Walsh [36], and

∫∫
[0,t]×Rd X (s, y)W (ds, dy) is well-defined for a suitable class of

random fields
{

X (s, y), (s, y) ∈ [0,∞) × Rd
}
.

Recall that the rigorous meaning of the spde (1.1) is in the integral form (1.8).

Definition 2.1. A process u =
{
u(t, x), (t, x) ∈ (0,∞) × Rd

}
is called a random field solution

to (1.1) if

(1) u is adapted, i.e., for all (t, x) ∈ (0,∞) × Rd , u(t, x) is Ft -measurable;
(2) u is jointly measurable with respect to B

(
(0,∞) × Rd

)
× F ;

(3) for all (t, x) ∈ (0,∞) × Rd , the following space–time convolution is finite:(
Y 2 ⋆ ||ρ(u)||22

)
(t, x) :=

∫ t

0
ds
∫
Rd

dy Y 2(t − s, x − y) ||ρ(u(s, y))||22 < +∞;

(4) the function (t, x) ↦→ I (t, x) mapping (0,∞) × Rd into L2(Ω ) is continuous;
(5) u satisfies (1.8) a.s., for all (t, x) ∈ (0,∞) × Rd .

Assume that the function ρ : R ↦→ R is globally Lipschitz continuous with Lipschitz constant
Lipρ > 0. We need some growth conditions on ρ4: assume that for some constants Lρ > 0 and
ς ≥ 0,

|ρ(x)|2 ≤ L2
ρ

(
ς2

+ x2) , for all x ∈ R. (2.1)

Sometimes we need a lower bound on ρ(x): assume that for some constants lρ > 0 and ς ≥ 0,

|ρ(x)|2 ≥ l2ρ
(
ς2

+ x2
)
, for all x ∈ R . (2.2)

For all (t, x) ∈ (0,∞) × Rd , n ∈ N and λ ∈ R, define

L0 (t, x) := Y 2(t, x)

Ln (t, x) := (L0 ⋆ . . . ⋆ L0) (t, x), for n ≥ 1, (n convolutions), (2.3)

K (t, x; λ) :=

∞∑
n=0

λ2(n+1)Ln (t, x) . (2.4)

We will use the following conventions to the kernel functions K(t, x; λ):

K(t, x) := K(t, x; λ), K(t, x) := K
(
t, x; Lρ

)
,

K(t, x) := K
(
t, x; lρ

)
, K̂p(t, x) := K

(
t, x; 4

√
pLρ

)
, for p ≥ 2 .

(2.5)

Throughout the paper, denote

σ := 2(1 − β − γ ) + βd/α. (2.6)

4 This is a consequence of the Lipschitz continuity of ρ.
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Note that

(1.9) ⇒ d < 2α+
α

β
(2γ −1) ⇔ 2(β+γ )−1−dβ/α > 0 ⇔ σ < 1. (2.7)

Let t Dα
+

denote the Riemann–Liouville fractional derivative of order α ∈ R (see, e.g., [31,
(2.79) and (2.88)]):

t Dα
+

f (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ (m − α)

dm

dtm

∫ t

0
dτ

f (τ )
(t − τ )α+1−m

if m − 1 < α < m and α ≥ 0,

dm

dtm
f (t) if α = m ≥ 0,

1
Γ (−α)

∫ t

0
s−α−1 f (s)ds if α < 0.

(2.8)

We will need the two-parameter Mittag-Leffler function

Eα,β(z) :=

∞∑
k=0

zk

Γ (αk + β)
, α > 0, β > 0 , (2.9)

which is a generalization of exponential function, E1,1(z) = ez ; see, e.g., [31, Section 1.2].
A function is called completely monotonic if (−1)n f (n)(x) ≥ 0 for n = 0, 1, 2, . . . ; see [37,
Definition 4]. An important fact [34] concerning the Mittag-Leffler function is that

x ∈ [0,∞) ↦→ Eα,β(−x) is completely monotonic ⇐⇒ 0 < α ≤ 1 ∧ β. (2.10)

By [22, (2.9.27)], the above Mittag-Leffler function is a special case of the Fox H-function:

Eα,β(z) = H 1,1
1,2

(
−z

⏐⏐⏐ (0, 1)

(0, 1), (1 − β, α)

)
.

3. Main results

The first two theorems are about the existence, uniqueness and moment estimates of the
solutions to (1.1). The second one, in particular, possesses the same form as the one in [4,
Theorem 3.1]. See also similar results for other equations, e.g., SHE [7, Theorem 2.4], SWE [6,
Theorem 2.3], and SFHE [8, Theorem 3.1].

Theorem 3.1 (Existence, Uniqueness and Moments (I)). Under (1.9), the spde (1.1) has a unique
(in the sense of versions) random field solution {u(t, x) : (t, x) ∈ (0,∞) ×Rd

} if the initial data
are such that

Ĉt := sup
(s,x)∈[0,t]×Rd

|J0(s, x)| < +∞. (3.1)

Moreover, the following statements are true:

(1) (t, x) ↦→ u(t, x) is L p(Ω )-continuous for all p ≥ 2;
(2) For all even integers p ≥ 2, all t > 0 and x, y ∈ Rd ,

||u(t, x)||2p ≤ 2J 2
0 (t, x) +

[
ς2

+ 2Ĉ2
t

]
exp

(
Cλ

2
1−σ t

)
, (3.2)

where C is some universal constant not depending on p, and σ is defined in (2.6).

This theorem is proved in Section 5.6. Note that if the initial data are bounded functions, then
(3.1) is satisfied.
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Theorem 3.2 (Existence, Uniqueness and Moments (II)). If Dalang’s condition (1.9) is satisfied,
then the spde (1.1) has a unique (in the sense of versions) random field solution {u(t, x) : (t, x) ∈

(0,∞)×Rd
} starting from either initial data that satisfy (3.1) under condition (1.11) or any Borel

measures from Mα,β(R) under condition (1.12). Moreover, the following statements are true:

(1) (t, x) ↦→ u(t, x) is L p(Ω )-continuous for all p ≥ 2;
(2) For all even integers p ≥ 2, all t > 0 and x, y ∈ Rd ,

||u(t, x)||2p ≤

{
J 2

0 (t, x) +
([
ς2

+ J 2
0

]
⋆K

)
(t, x), if p = 2 ,

2J 2
0 (t, x) +

([
ς2

+ 2J 2
0

]
⋆ K̂p

)
(t, x), if p > 2 ;

(3.3)

(3) If ρ satisfies (2.2), then under (1.9), (1.11) and the first two cases of (1.21), for all t > 0
and x, y ∈ Rd , it holds that

||u(t, x)||22 ≥ J 2
0 (t, x) +

((
ς2

+ J 2
0

)
⋆K

)
(t, x) . (3.4)

The proof of this theorem is given in Section 5.5.
The following theorem gives the Hölder continuity of the solution for slow diffusion

equations.

Theorem 3.3. Recall that the constants σ and Θ are defined in (2.6) and (1.9), respectively. If
β ∈ (0, 1], γ ∈ [0, 1 − β] and (3.1) holds, then under (1.9),

sup
(t,x)∈[0,T ]×Rd

||u(t, x)||2p < +∞, for all T ≥ 0 and p ≥ 2. (3.5)

Moreover, we have

I (·, ·) ∈ C 1
2 (1−σ )−, 1

2 min(Θ−d,2)−

(
[0,∞) × Rd) , a.s. , (3.6)

and (1.17) holds.

Proof. The bound (3.5) is due to (3.1) and (3.3). The proof of (3.6) is straightforward under (3.5)
and Proposition 5.4 (see [5, Remark 4.6]). □

In order to use the moment bounds in (3.3) and (3.4), we need some good estimate on the
kernel function K(t, x). Following [4], define the following reference kernel functions:

Gα,β(t, x) :=

⎧⎪⎪⎨⎪⎪⎩
cβ
(
4νπ tβ

)−d/2
exp

(
−

1
4ν

(
t−β/2

|x |
)⌊β⌋+1

)
, if α = 2,

cd tβ/α(
t2β/α + |x |

2)(d+1)/2 , if α ∈ (0, 2),
(3.7)

for β ∈ (0, 2) where |x |
2

= x2
1 + · · · + x2

d , cβ = 1 if β ∈ [1, 2) and cβ = 2−(1+d)ν−d/2Γ (d/2)/Γ
(d) if β ∈ (0, 1), and cd = π−(d+1)/2Γ ((d + 1)/2). Define also

G
α,β

(t, x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
νπ tβ

)−d/2
exp

(
−

|x |
2

νtβ

)
if α = 2,

cd tβ/α(
t2β/α + |x |

2)(d+1)/2 , if α ∈ (0, 2).
(3.8)

These reference kernels are nonnegative and the constants cβ and cd are chosen such that the
integration of these kernels on Rd is equal to one.
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Theorem 3.4. Fix λ ∈ R.

(1) Under (1.9) and (1.11), there are two nonnegative constants C and Υ depending on α, β,
γ , and ν, such that, for all (t, x) ∈ (0,∞) × Rd ,

K(t, x; λ) ≤
C
tσ

Gα,β(t, x)
(

1 + tσ exp
(
λ

2
1−σ Υ t

))
, (3.9)

where σ is defined in (2.6);
(2) Under (1.9), (1.11) and the first two cases in (1.21), there are two nonnegative constants

C and Υ depending on α, β, γ , and ν, such that, for all (t, x) ∈ (0,∞) × Rd ,

K(t, x; λ) ≥ C G
α,β

(t, x) exp
(
λ

2
1−σ Υ t

)
. (3.10)

Proof. This theorem is due to Propositions 5.10, 5.11 and [4, Proposition 5.2]. □

The last set of results are the weak intermittency.

Theorem 3.5 (Weak Intermittency). Suppose that (1.9) holds and the initial data satisfy (3.1).

(1) If ρ satisfies (2.1), then for some finite constant C > 0,

m p ≤ CL
2

2(β+γ )−1−dβ/α
ρ p1+

1
2(β+γ )−1−dβ/α , for all p ≥ 2 even.

(2) Suppose that the initial data are uniformly bounded from below, i.e., µ(dx) = f (x)dx and
f (x) ≥ c > 0 for all x ∈ Rd . If ρ satisfies (2.2) with |c| + |ς | ̸= 0, then under (1.9),
(1.11) and the first two cases in (1.21), there is some finite constant C ′ > 0 such that

m p ≥ C ′l
2

2(β+γ )−1−dβ/α
ρ p, for all p ≥ 2.

Proof. By (3.3), (3.9) and (5.11),

||u(t, x)||2p ≤ Ĉ2
t + C t−σ

(
ς2

+ 2Ĉ2
t

) (
1 + tσ exp

(
ΥL

2
1−σ
ρ p

1
1−σ t

))
.

Then increase the power by a factor p/2. As for the lower bound, it holds that

||u(t, x)||2p ≥ ||u(t, x)||22 ≥ c2
+ C

(
ς2

+ c2
)

exp
(

l
2

1−σ
ρ Υ t

)
,

thanks to (3.4) and (3.10). □

4. Fundamental solutions

Theorem 4.1. For α ∈ (0, 2], β ∈ (0, 2) and γ ≥ 0, the solution to⎧⎪⎨⎪⎩
(
∂β +

ν

2
(−∆)α/2

)
u(t, x) = I γt [ f (t, x)] , t > 0, x ∈ Rd ,

∂k

∂tk
u(t, x)

⏐⏐⏐⏐
t=0

= uk(x), 0 ≤ k ≤ ⌈β⌉ − 1, x ∈ Rd ,
(4.1)

is

u(t, x) = J0(t, x) +

∫ t

0
ds
∫
Rd

dy f (s, y) t D⌈β⌉−β−γ
+ Z (t − s, x − y), (4.2)
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where

J0(t, x) :=

⌈β⌉−1∑
k=0

∫
Rd

u⌈β⌉−1−k(y)∂k Z (t, x − y)dy (4.3)

is the solution to the homogeneous equation and

Zα,β,d (t, x) := π−d/2t⌈β⌉−1
|x |

−d H 2,1
2,3

(
|x |

α

2α−1νtβ

⏐⏐⏐ (1, 1), (⌈β⌉ , β)

(d/2, α/2), (1, 1), (1, α/2)

)
, (4.4)

Yα,β,γ,d (t, x) := t D⌈β⌉−β−γ
+ Zα,β,d (t, x) = π−d/2

|x |
−d tβ+γ−1

× H 2,1
2,3

(
|x |

α

2α−1νtβ

⏐⏐⏐ (1, 1), (β + γ, β)

(d/2, α/2), (1, 1), (1, α/2)

)
(4.5)

and, if β ∈ (1, 2),

Z∗

α,β,d (t, x) :=
∂

∂t
Zα,β,d (t, x) = π−d/2

|x |
−d H 2,1

2,3

(
|x |

α

2α−1νtβ

⏐⏐⏐ (1, 1), (1, β)

(d/2, α/2), (1, 1), (1, α/2)

)
.

(4.6)

Moreover,

F Zα,β,d (t, ·)(ξ ) = t⌈β⌉−1 Eβ,⌈β⌉(−2−1νtβ |ξ |α), (4.7)

FYα,β,γ,d (t, ·)(ξ ) = tβ+γ−1 Eβ,β+γ (−2−1νtβ |ξ |α), (4.8)

F Z∗

α,β,d (t, ·)(ξ ) = Eβ(−2−1νtβ |ξ |α), if β ∈ (1, 2). (4.9)

This theorem is proved in Section 4.2. For convenience, we will use the following notation

Y (t, x) := Yα,β,γ,d (t, x) = t D⌈β⌉−β−γ
+ Z (t, x), (4.10)

Z∗(t, x) := Z∗

α,β,d (t, x) =
∂

∂t
Z (t, x), if β ∈ (1, 2). (4.11)

A direct consequence of expression (4.5) is the following scaling property

Y (t, x) = tβ+γ−1−dβ/αY
(
1, t−β/αx

)
. (4.12)

Remark 4.2. By choosing α = 2, d = 1 and β arbitrarily close to 2, one can see that the first
condition in (1.10) suggests the condition γ > −1. However, when γ ∈ (−1, 0), one needs to
specify another initial condition, namely, I 1−γ

t f (t, x)
⏐⏐⏐
t=0

. For example (Example 4.1 in [31, p.
138]), the differential equation

t D1/2
+ g(t) + g(t) = 0, (t > 0); I 1/2

t g(t)
⏐⏐⏐
t=0

= C,

is solved by g(t) = C
(

1
√
π t

− et erfc(
√

t)
)

. This initial condition is obscure when the driving

term f becomes the multiplicative noise ρ(u(t, x))Ẇ (t, x). Hence, throughout this paper, we
assume γ ≥ 0.

This following lemma gives the asymptotics of fundamental solutions Zα,β,d (1, x), Yα,β,γ,d
(1, x), and Z∗

α,β,d (1, x) at x = 0 by choosing suitable values for η:

η =

⎧⎪⎨⎪⎩
⌈β⌉ in case of Z ,
β + γ in case of Y ,
1 in case of Z∗, when β ∈ (1, 2).
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Lemma 4.3. Suppose α ∈ (0, 2], β ∈ (0, 2), η ∈ R, and d ∈ N. Let

g(x) = x−d H 2,1
2,3

(
xα
⏐⏐⏐ (1, 1), (η, β)

(d/2, α/2), (1, 1), (1, α/2)

)
, x > 0.

Then as x → 0+, the following holds:

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ (d − α)/2
Γ (η − β)Γ (α/2)

xα−d
+ O(xmin(2α−d,0)) if η ̸= β and d > α : Case 1,

−
α

Γ (η − β)Γ (1 + d/2)
log x + O(1) if η ̸= β and d = α : Case 2,

2
α

Γ (1 − d/α)Γ (d/α)
Γ (η − dβ/α)Γ (d/2)

+ O(xα−d ) if η ̸= β and d < α : Case 3,

2Γ (d/α)
αΓ (d/2)

+ O(x2) if β = η = 1 : Case 4,

−
Γ ((d − 2α)/2)
Γ (−β)Γ (α)

x2α−d
+ O(xmin(3α−d,0)) if β = η ̸= 1 and d/α > 2 : Case 5,

2α
Γ (−β)Γ (1 + d/2)

log x + O(xα) if β = η ̸= 1 and d/α = 2 : Case 6,

2
α

Γ (1 − d/α)Γ (d/α)
Γ (β(1 − d/α))Γ (d/2)

+ O(x2α−d ) if β = η ̸= 1 and d/α ∈ (1, 2) : Case 7,

−
β

Γ (1 + d/2)
+ O(xα) if β = η ̸= 1 and d/α = 1 : Case 8,

2
α

Γ (1 − d/α)Γ (d/α)
Γ (β(1 − d/α))Γ (d/2)

+ O(xα) if β = η ̸= 1 and d/α < 1 : Case 9,

where all the coefficients of the leading terms are finite and nonvanishing.

The calculations in the proof of this lemma is quite lengthy. We postpone it to Appendix A.1.

Remark 4.4. Since Dalang’s condition (1.9) implies d < 2α, the cases 5 and 6 are void under
(1.9). Combining the rest seven cases in Lemma 4.3, we have that

lim
x→0

Yα,β,γ,d (1, x) =

⎧⎪⎪⎨⎪⎪⎩
+∞ if γ > 0 and α ≤ d < 2α : Cases 1–2,
C1 if γ > 0 and α > d = 1 : Case 3,
C2 if γ = 0, β = 1 and α ̸= d : Case 4,
C3 if γ = 0, β ̸= 1 and d < 2α : Cases 7–9,

(4.13)

and

lim
x→0

Zα,β,d (1, x) =

⎧⎨⎩+∞ if β ̸= 1 and α ≤ d < 2α : Cases 1–2,
C4 if β ̸= 1 and α > d = 1 : Case 3,
C2 if β = 1 and α ̸= d : Case 4,

(4.14)

and when β ∈ (1, 2),

lim
x→0

Z∗

α,β,d (1, x) =

{
+∞ if α ≤ d < 2α : Cases 1–2,
C5 if α > d = 1 : Case 3, (4.15)

where the constants Ci ∈ R \ {0}, i = 1, . . . , 5, only depend on α, β, γ and d. Combining all
these cases, we see that under (1.11), Y (1, x) is bounded at x = 0, and under (1.12), all functions
Z (1, x), Z∗(1, x) and Y (1, x) are bounded at x = 0.
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Lemma 4.5. Yα,β,γ,d (1, x) has the following asymptotic property as |x | → ∞:

Yα,β,γ,d (1, x) ∼

{
Aα|x |

−(d+α) if α ̸= 2,
A2|x |

ae−b|x |
c

if α = 2,
(4.16)

where the nonnegative constants are

Aα =

⎧⎨⎩−π−d/2ν2α−1 Γ ((d+α)/2)
Γ (2β+γ )Γ (−α/2) if α ̸= 2,

π−d/2(2 − β)d/2−(β+γ )β
β(d+2−2(β+γ ))

2(2−β) (2ν)
2(β+γ )−(d+2)

2(2−β) if α = 2,
(4.17)

and

a =
d(β − 1) − 2(β + γ − 1)

2 − β
, b = (2 − β)β

β
2−β (2ν)

1
β−2 , and c =

2
2 − β

. (4.18)

Moreover, the asymptotic properties for Z (1, x) and Z∗(1, x) are the same as that for Y (1, x)
except that the argument γ in both (4.17) and (4.18) should be replaced by ⌈β⌉ − β and 1,
respectively.

These asymptotics are obtained from [22, Sections 1.5 and 1.7]. We leave the details for
interested readers.

Theorem 4.6. Suppose that α ∈ (0, 2], β ∈ (0, 2), and γ ≥ 0. The functions Z (t, x) :=

Zα,β,d (t, x), Y (t, x) := Yα,β,γ,d (t, x) and Z∗(t, x) := Z∗

α,β,d (t, x), defined in Theorem 4.1, satisfy
the following properties:

(1) For all d ∈ N and β ∈ (0, 1), both functions Z and Y are nonnegative. When β = 1, Z is
nonnegative, and Y is nonnegative if either γ = 0 or γ > 1;

(2) All functions Z, Z∗ and Y are nonnegative if d ≤ 3 and 1 < β < α ≤ 2. When
1 < β = α < 2, Y is nonnegative if γ > (d + 3)/2 − β;

(3) When d ≥ 4, Yα,β,0,d (t, x) assumes both positive and negative values for all α ∈ (0, 2]
and β ∈ (1, 2).

This theorem is proved in Section 4.3. It generalizes the results by Mainardi et al. [26] from
one-space dimension to higher space-dimension. Moreover, in [26] only Z when β ∈ (0, 1] and
Z∗ when β ∈ (1, 2) are studied. When β ∈ (1, 2), it also generalizes the results by Pskhu [32]
from α = 2 and γ = 0 to general α ∈ (0, 2] and γ > −1.

4.1. Some special cases

In this part, we list some special cases.

Example 4.7. When γ = 0 or γ = ⌈β⌉ − β, the expressions for Z , Y and Z∗ in Theorem 4.1
recover the results in [9].

Example 4.8. When α = 2, by [22, Property 2.2], we see that

Z2,β,d (t, x) = π−d/2t⌈β⌉−1
|x |

−d H 2,0
1,2

(
|x |

2

2νtβ

⏐⏐⏐ (⌈β⌉ , β)

(d/2, 1), (1, 1)

)
, (4.19)

and

Y2,β,γ,d (t, x) = π−d/2tβ+γ−1
|x |

−d H 2,0
1,2

(
|x |

2

2νtβ

⏐⏐⏐ (β + γ, β)

(d/2, 1), (1, 1)

)
, (4.20)
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and, when β ∈ (1, 2),

Z∗

2,β,d (t, x) = π−d/2
|x |

−d H 2,0
1,2

(
x2

2νtβ

⏐⏐⏐ (1, β)

(d/2, 1), (1, 1)

)
. (4.21)

In particular, for β ∈ (0, 1) and γ = 0, the expressions for Z and Y recover those in [19,24].
For Z2,β,d , see also [23, Chapter 6]. When β ∈ (1, 2), γ = 0 and ν = 2, the expression for Y
recovers the result in [32].

Example 4.9. When α = 2 and d = 1, using Lemma A.2 and (A.8), we see that

Z2,β,1(t, x) = |x |
−1t⌈β⌉−1 H 1,0

1,1

(
2x2

νtβ

⏐⏐⏐ (⌈β⌉ , β)

(1, 2)

)
=

t⌈β⌉−1−β/2

√
2ν

Mβ/2,⌈β⌉

(
|x |

√
ν/2 tβ/2

)
,

(4.22)

and

Y2,β,γ,1(t, x) = |x |
−1tβ+γ−1 H 1,0

1,1

(
2x2

νtβ

⏐⏐⏐ (β + γ, β)

(1, 2)

)
=

tβ/2+γ−1

√
2ν

Mβ/2,β+γ

(
|x |

√
ν/2 tβ/2

)
,

(4.23)

and, when β ∈ (1, 2),

Z∗

2,β,1(t, x) = |x |
−1 H 1,0

1,1

(
2x2

νtβ

⏐⏐⏐ (1, β)

(1, 2)

)
=

t−β/2

√
2ν

Mβ/2,1

(
|x |

√
ν/2 tβ/2

)
, (4.24)

where Mλ,µ(z) is the two-parameter Mainardi functions (see [4]) of order λ ∈ [0, 1),

Mλ,µ(z) :=

∞∑
n=0

(−1)n zn

n! Γ (µ− (n + 1)λ)
, for µ and z ∈ C . (4.25)

For example, M1/2,1(z) =
1

√
π

exp
(
−z2/4

)
. The one-parameter Mainardi functions Mλ(z) are

used by Mainardi, et al. in [25,26].

Example 4.10. In [26], the fundamental solutions Zα,β,d (t, x) for β ∈ (0, 1] and Z∗

α,β,d (t, x)
for β ∈ (1, 2] have been studied for all α ∈ (0, 2) and d = 1. From the Mellin–Barnes integral
representation (6.6) of [26], we can see that the reduced Green function of [26] can be expressed
using the Fox H-function:

K θ
α,β(x) =

1
|x |

H 2,1
3,3

(
|x |

α
⏐⏐⏐ (1, 1), (1, β), (1, α−θ

2 )

(1, 1), (1, α), (1, α−θ
2 )

)
, x ∈ R, (4.26)

where α and β have the same meaning as this paper and θ is the skewness: |θ | ≤ min(α, 2 − α).
For the symmetric α-stable case, i.e., θ = 0, this expression can be simplified using Lemma A.2.
Hence,

K 0
α,β(x) =

1
√
π |x |

H 2,1
2,3

(
(|x |/2)α

⏐⏐⏐ (1, 1), (1, β)

(1/2, α/2), (1, 1), (1, α/2)

)
, x ∈ R. (4.27)

Therefore, their fundamental solution [26, (1.3)]

G0
α,β(x, t) = t−β/αK 0

α,β(t−β/αx) =
1

√
π |x |

H 2,1
2,3

(
|x |

α

2αtβ

⏐⏐⏐ (1, 1), (1, β)

(1/2, α/2), (1, 1), (1, α/2)

)
corresponds, in the case when ν = 2, to our Zα,β,1(t, x) when β ∈ (0, 1] and Z∗

α,β,1(t, x) when
β ∈ (1, 2).
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Fig. 1. Some graphs of the function Y2,β,0,1(1, x) with ν = 2, and β = 15/8, 5/3, 3/2, 1, 3/4, 1/2, and 1/8 from top to
bottom.

Fig. 2. Graphs of the Green functions Y2,β,0,1(t, x) for 1 < β < 2 for 1 ≤ t ≤ 6 and |x | ≤ 5.

Here we draw some graphs5 of these Green functions Y (t, x): see Figs. 1 and 2. As β
approaches 2, the graphs of Y (t, x) become closer to the wave kernel 1

2 1|x |≤νt/2.

4.2. Proof of Theorem 4.1

Proof of Theorem 4.1. Eqs.(4.4)–(4.9) have been proved in [9] when γ = 0. Let f̂ and g̃
denote the Fourier transform in the space variable and the Laplace transform in the time variable,
respectively. Apply the Fourier transform to (4.1) to obtain⎧⎪⎨⎪⎩

∂β û(t, ξ ) +
ν

2
|ξ |α û(t, ξ ) = I γt

[
f̂ (t, ξ )

]
, ξ ∈ Rd

∂k

∂tk
û(t, ξ )

⏐⏐⏐⏐
t=0

= ûk(ξ ) , 0 ≤ k ≤ ⌈β⌉ − 1, ξ ∈ Rd .

Apply the Laplace transform on the Caputo derivative using [18, Theorem 7.1]:

L
[
∂β û(t, ξ )

]
(s) = sβ ˜̂u(s, ξ ) −

⌈β⌉−1∑
k=0

sβ−1−k ûk(ξ ).

5 The graphs are produced by truncating the infinite sum in (4.25) by the first 24 terms. In Fig. 2, due to the bad
approximations for small t when truncating the infinite sum, the graphs are produced for t staying away from 0.
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On the other hand, it is known that (see, e.g., [33, (7.14)]),

LI γt
[

f̂ (t, ξ )
]

= s−γ ˜̂f (s, ξ ), Re(γ ) > 0.

Thus,

˜̂u(s, ξ ) =

(
sβ +

ν

2
|ξ |α

)−1
[

⌈β⌉−1∑
k=0

sβ−1−k ûk(ξ ) + s−γ ˜̂f (s, ξ )

]
.

Notice that (see [31, (1.80)])

L
[
tβ−1 Eα,β(−λtα)

]
(s) =

sα−β

sα + λ
, for Re(s) > |λ|1/α .

Hence,

û(t, ξ ) =

⌈β⌉−1∑
k=0

tk Eβ,k+1

(
−
ν

2
|ξ |αtβ

)
ûk(ξ ) +

∫ t

0
dτ τ β+γ−1 Eβ,β+γ

(
−
ν

2
|ξ |ατ β

)
f̂ (τ, ξ ),

from which (4.7)–(4.9) are proved. The expressions for Z and Z∗ in (4.4) and (4.6), respectively,
are proved in [9]. By the fact that (see [31, (1.82)])

t Dγ
+

(
tβ−1 Eα,β(λtα)

)
= tβ−γ−1 Eα,β−γ (λtα), γ ∈ R.

Recall that t Dα
+

is the Riemann–Liouville fractional derivative of order α ∈ R (see (2.8)). Hence,
we see that

Y (t, x) = t Dθ
+

Z (t, x), with θ := ⌈β⌉ − β − γ ,

which can be evaluated using [22, Theorem 2.8] in the same way as in [9] for the case γ = 0.
This completes the proof of Theorem 4.1. □

4.3. Nonnegativity of the fundamental solutions (proof of Theorem 4.6 )

We first prove some lemmas.

Lemma 4.11. The following Fox H-functions are nonnegative:

(1) for all θ ∈ (0, 1),

H 1,1
2,2

(
x
⏐⏐⏐ (0, 1), (0, θ)

(0, 1), (0, θ)

)
=

1
π

x1/θ

1 + 2x1/θ cos(πθ ) + x2/θ > 0, for x > 0; (4.28)

(2) for all µ > 0 and 0 < θ ≤ min(1, µ),

R ∋ x ↦→ H 1,0
1,1

(
|x |

⏐⏐⏐ (µ, θ)

(1, 1)

)
≥ 0. (4.29)

(3) for all d ∈ N and α ∈ (0, 2],

R ∋ x ↦→ H 1,1
1,2

(
|x |

⏐⏐⏐ (1, 1)

(d/2, α/2), (1, α/2)

)
> 0. (4.30)



L. Chen, Y. Hu and D. Nualart / Stochastic Processes and their Applications 129 (2019) 5073–5112 5091

Proof. (2) and (3) are covered by Lemma 4.5 and Theorem 3.3 of [9], respectively. As for
(1), expression (4.28) can be found in [26, (4.38)] for the neutral-fractional diffusions. For
completeness, we give a proof here. Because the parameters ∆ and δ, defined in (A.2) and (A.5),
of this Fox H-function are equal to 0 and 1, respectively, Theorem 1.3 implies that for x ∈ (0, 1),

H 1,1
2,2

(
x
⏐⏐⏐ (0, 1), (0, θ)

(0, 1), (0, θ)

)
=

∞∑
k=0

(−1)k

k!

Γ (k + 1)
Γ (−kθ )Γ (1 + kθ )

xk/θ

=

∞∑
k=0

−(−1)k sin(πkθ )xk/θ (4.31)

= Im

(
∞∑

k=0

−(−1)kekθ i xk/θ

)

= −Im
1

1 + eθ i x1/θ

=
1
π

x1/θ

1 + 2x1/θ cos(πθ ) + x2/θ ,

where we have applied [30, (5.5.3)] in (4.31). Similarly, when x > 1, Theorem 1.4 of [23]
implies that

H 1,1
2,2

(
x
⏐⏐⏐ (0, 1), (0, θ)

(0, 1), (0, θ)

)
=

∞∑
k=0

(−1)k

k!

Γ (k + 1)
Γ (−(1 + k)θ )Γ (1 + (1 + k)θ )

x−(1+k)/θ

=

∞∑
k=0

(−1)k sin(π (1 + k)θ )x−(1+k)/θ

= Im

(
∞∑

k=0

−(−1)kekθ i x−k/θ

)

= −Im
1

1 + eθ i x−1/θ

=
1
π

x1/θ

1 + 2x1/θ cos(πθ ) + x2/θ .

Finally, the existence of this Fox H-function at x = 1 is not covered by Theorem 1.1 of [22]
because ∆ = 0 and µ = 0 (see (A.4) for the definition of the parameter µ). In fact, as one can
see that the series in (4.31) with x = 1 diverges. Nevertheless, we may define that

H 1,1
2,2

(
1
⏐⏐⏐ (0, 1), (0, θ)

(0, 1), (0, θ)

)
:= lim

x→1

1
π

x1/θ

1 + 2x1/θ cos(πθ ) + x2/θ =
1

2π
1

1 + cos(πθ )
> 0.

This completes the proof of Lemma 4.11. □

Lemma 4.12. For µ ∈ (0, 2], θ ∈ (0, 2] and d ≥ 1, the function

fd,µ,θ (x) := x−d H 2,0
1,2

(
x2
⏐⏐⏐ (µ, θ)

(d/2, 1), (1, 1)

)
, x > 0,
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has the following properties:

(a)
d

dx
fd,µ,θ (x) = −2x fd+2,µ,θ (x).

(b) fd,µ,θ (x) =
2

√
π

∫
∞

x
dz

z
√

z2 − x2
fd+1,µ,θ (z) for x > 0.

(c) fd,µ,θ (x) ≥ 0 for all x > 0 if θ ≤ 2 min(1, µ) and d ≤ 3.

Proof. (a) Apply [22, Property 2.8] with k = 1, w = −d, c = 1 and σ = 2 to get

d
dx

fd,µ,θ (x) = x−d−1 H 2,1
2,3

(
x2
⏐⏐⏐ (d, 2), (µ, θ)

(d/2, 1), (1, 1), (1 + d, 2)

)
.

By the recurrence relation of the Gamma function, we see that

Γ (1 − d − 2s)
Γ (−d − 2s)

Γ (d/2 + s) = −2(s + d/2)Γ (d/2 + s) = −2Γ (1 + d/2 + s).

By the definition of the Fox H-function, the above expression can be simplified as

d
dx

fd,µ,θ (x) = −2x−d−1 H 2,1
1,2

(
x2
⏐⏐⏐ (µ, θ)

((d + 2)/2, 1), (1, 1)

)
= −2x fd+2,µ,θ (x).

(b) By the definition of the Fox H-function,

fd+1,µ,θ (x) = x−(d+1) 1
2π i

∫
L iγ∞

Γ ((d + 1)/2 + s)Γ (1 + s)
Γ (1 − µ− θs)

x−2sds, for any γ > −1,

(4.32)

where the contour L iγ∞ is defined in Definition A.1. Assuming that we can switch the integrals,
which can be made rigorous by writing f in the series form and applying Fubini’s theorem, we
see that∫

∞

x
dz

z
√

z2 − x2
fd+1,µ,θ (z) =

1
2π i

∫
L iγ∞

ds
Γ ((d + 1)/2 + s)Γ (1 + s)

Γ (1 − µ− θs)

×

∫
∞

x
dz

z−2s−d

√
z2 − x2

.

By change of variable (z/x)2
− 1 = y and Euler’s Beta integral (see, e.g., [30, 5.12.3 on p.142]),

we see that∫
∞

x
dz

z−2s−d

√
z2 − x2

=
x−2s−d

2

∫
∞

0
y

1
2 −1(1 + y)−

1
2 −

2s+d
2 dy =

x−2s−d

2

√
π Γ (d/2 + s)

Γ ((d + 1)/2 + s)
.

Note that the above integral is convergent provided that Re(2s + d) > 0, which is satisfied by
choosing, e.g., γ = Re(s) = 0 in (4.32). Therefore,∫

∞

x
dz

z
√

z2 − x2
fd+1,µ,θ (z) =

√
π

2
x−d 1

2π i

∫
L iγ∞

Γ (d/2 + s)Γ (1 + s)
Γ (1 − µ− θs)

x−2sds

=

√
π

2
fd,µ,θ (x).
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(c) By the recurrence in (b), we only need to prove the case d = 3. Apply Lemma A.2, Properties
2.4 and 2.5 in [23] to obtain

f3,µ,θ (x) =

√
π

4
x−3 H 1,0

1,1

(
4x2

⏐⏐⏐ (µ, θ)

(2, 2)

)
=

√
π

8
x−3 H 1,0

1,1

(
2x
⏐⏐⏐ (µ, θ/2)

(2, 1)

)
=

√
π

16
x−4 H 1,0

1,1

(
2x
⏐⏐⏐ (µ− θ/2, θ/2)

(1, 1)

)
.

Then (c) is proved by an application of part (2) of Lemma 4.11. □

Proof of Theorem 4.6. By comparing the Fox H-functions in (4.4), (4.5), and (4.6), We only
need to consider the following Fox H-function:

g(x) = H 2,1
2,3

(
x
⏐⏐⏐ (1, 1), (η, β)

(d/2, α/2), (1, 1), (1, α/2)

)
, x > 0.

The parameter η takes the following values

η =

⎧⎪⎨⎪⎩
⌈β⌉ in case of Z ,
β + γ in case of Y ,
1 in case of Z∗.

(1) If β = 1 and γ = 0, then Z = Y and by Property 2.2 of [23],

g(x) = H 2,0
1,2

(
x
⏐⏐⏐ (1, 1)

(d/2, α/2), (1, α/2)

)
, x > 0

which is positive by part (3) of Lemma 4.11. If β < 1, then we can apply Theorem A.5 to obtain
that

g(x) =

∫
∞

0
H 1,1

1,2

(
t
⏐⏐⏐ (1, 1)

(d/2, α/2), (1, α/2)

)
H 1,0

1,1

(
x
t

⏐⏐⏐ (η, β)

(1, 1)

)
dt
t
. (4.33)

In fact, conditions (A.12) are satisfied because

A1 = 0, B1 = d/α, A2 = 1, B2 = ∞.

Moreover, a∗

1 = 1 and β ∈ (0, 1) implies that a∗

2 = 1 − β > 0. Hence, condition (1) of
Theorem A.5 is satisfied. This proves (4.33). If β = 1 and γ > 0, then a∗

2 = ∆2 = 0.
In view of condition (3) of Theorem A.5, relation (4.33) is still true if Re(µ2) > −1 with
µ2 = 1 − η, i.e., γ > 1. The two Fox H-functions in (4.33) are nonnegative by parts (2) and (3)
of Lemma 4.11.

(2) In this case, we have that d ≤ 3. When α = 2, by Property 2.2 of [23] and Lemma 4.12,

g(x) = H 2,0
1,2

(
x
⏐⏐⏐ (η, β)

(d/2, 1), (1, 1)

)
= xd/2 fd,η,β(

√
x) ≥ 0, x > 0,

because β < 2 ≤ 2 min(1, η). If α ̸= 2, by Property 2.2 of [23], we see that

g(x) = H 3,1
3,4

(
x
⏐⏐⏐ (1, 1), (η, β), (1, α/2)

(d/2, α/2), (1, α/2), (1, 1), (1, α/2)

)
, x > 0,
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As in the previous case, by Theorem A.5, we see that∫
∞

0
H 2,0

1,2

(
t
⏐⏐⏐ (η, β)

(d/2, α/2), (1, α/2)

)
H 1,1

2,2

(
x
t

⏐⏐⏐ (1, 1), (1, α/2)

(1, 1), (1, α/2)

)
dt
t

= H 3,1
3,4

(
x
⏐⏐⏐ (1, 1), (η, β), (1, α/2)

(d/2, α/2), (1, α/2), (1, 1), (1, α/2)

)
. (4.34)

Note that condition (A.12) is satisfied because in this case,

A1 = ∞, B1 = min(d, 2)/α, A2 = 1, B2 = 0.

When α < β, then

a∗

1 = α − β > 0, a∗

2 = 2 − α > 0,

and condition (1) in Theorem A.5 is satisfied. When 1 < β = α < 2, then

a∗

2 = 2 − α > 0, a∗

1 = ∆1 = 0, Re(µ1) = 1 +
d
2

− η −
1
2
.

Hence, in view of condition (2) of Theorem A.5, the integral (4.34) is still true if 1 + d/2 − η−

1/2 < −1, i.e., γ > (d + 3)/2 − β.
Now, by Property 2.4 of [23], the first Fox H-function in (4.34) is equal to

2
α

H 2,0
1,2

(
t2/α

⏐⏐⏐ (η, 2β/α)

(d/2, 1), (1, 1)

)
=

2
α

td/α fd,η,2β/α(t1/α).

By Lemma 4.12(c), we see that under the condition that 2β
α

≤ 2 min(1, η), the first Fox H-
function in (4.34) is nonnegative. This condition is satisfied if 1 ≤ β ≤ α ≤ 2. By Property 2.3
in [22], the second Fox H-function in (4.34) is equal to

H 1,1
2,2

(
t
x

⏐⏐⏐ (0, 1), (0, α/2)

(0, 1), (0, α/2)

)
.

Thanks to Lemma 4.11(1), this function is strictly positive for t/x ̸= 0 when α ∈ (0, 2).

(3) Now we consider the case when d ≥ 4. The case α = 2 is covered by Lemma 25 of [32].
In the following, we assume that α ∈ (0, 2). By the scaling property, we may only consider the
case t = 1. Hence, it suffices to study the following function

g(x) = x−d H 2,1
2,3

(
xα
⏐⏐⏐ (1, 1), (β, β)

(d/2, α/2), (1, 1), (1, α/2)

)
, x > 0.

Because a∗
= 2 − β > 0, we can apply Theorem 1.7 of [23] to obtain that

g(x) = −
Γ ((d + α)/2)
Γ (2β)Γ (−α/2)

x−d−1
+ O(x−(d+1)), as x → ∞.

The condition α ∈ (0, 2) implies that Γ (−α/2) < 0. Thus, the coefficient of x−d−1 is positive.
Hence, g can assume positive values.

Now we consider the behavior of g(x) around zero. Because β > 1 and 2α < 4 ≤ d, we can
apply the case 6 of Lemma 4.3:

g(x) = −
Γ ((d − 2α)/2)
Γ (−β)Γ (α)

x2α−d
+ O(xmin(3α−d,0)), as x → 0+.

The coefficient of x2α−d is negative because Γ (−β) > 0 for β ∈ (1, 2). Therefore, g(x) can
assume negative values. This completes the proof of Theorem 4.6. □
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5. Proofs of Theorems 3.1 and 3.2

The proofs of Theorems 3.1 and 3.2 will follow the same arguments as the proof of [7,
Theorem 1.2], which requires some lemmas and propositions.

5.1. Dalang’s condition

Lemma 5.1. Suppose that θ > 1/2 and β ∈ (0, 2). The following statements are true:

(a) There is some nonnegative constant Cβ,θ such that for all t > 0 and λ > 0,∫ t

0
w2(θ−1) E2

β,θ (−λw
β)dw ≤ Cβ,θ

t2θ−1

1 + (tλ1/β)min(2β,2θ−1) , (5.1)

(b) If β ≤ min(1, θ), then for some nonnegative constant C ′

β,θ ,∫ t

0
w2(θ−1) E2

β,θ (−λw
β)dw ≥ C ′

β,θ

t2θ−1

1 + (tλ1/β)min(2β,2θ−1) ,

for all t > 0 and λ > 0.

Remark 5.2. When θ = β = 1, then E1(x) = ex and thus
∫ t

0 e−2λwdw = (2λ)−1(1 − e−2tλ) and
(5.1) is clear for this case.

Proof of Lemma 5.1. (a) In this case, by the asymptotic property of the Mittag-Leffler function
(see [31, Theorem 1.6]), for some nonnegative constants Ci ’s,∫ t

0
w2(θ−1) E2

β,θ (−λw
β)dw ≤ C1

∫ t

0

w2(θ−1)

(1 + λ1/βw)2β dw (5.2)

= C2 t2θ−1
∫ 1

0

u2(θ−1)

(1 + λ1/β tu)2β du

= C3 t2θ−1
2 F1(2β, 2θ − 1, 2θ; −tλ1/β) (5.3)

= C4 t2θ−1 H 1,2
2,2

(
tλ1/β

⏐⏐⏐ (1 − 2β, 1), (2(1 − θ ), 1)

(0, 1), (1 − 2θ, 1)

)
, (5.4)

where in (5.3) we have applied [30, 15.6.1] under the condition that θ > 1/2, and (5.4) is due
to [22, (2.9.15)]. Notice that ∆ = 0 for the above Fox H-function, which allows us to apply
Theorems 1.7 and 1.11 of [22]. In particular, by [22, Theorem 1.11], we know that

H 1,2
2,2

(
x
⏐⏐⏐ (1 − 2β, 1), (2(1 − θ ), 1)

(0, 1), (1 − 2θ, 1)

)
∼ O(1), as x → 0.

When θ ̸= β, by [22, Theorem 1.7],

H 1,2
2,2

(
x
⏐⏐⏐ (1 − 2β, 1), (2(1 − θ ), 1)

(0, 1), (1 − 2θ, 1)

)
∼ O

(
x− min(2β,2θ−1)) , as x → ∞.

In particular, when θ = β, by Property 2.2 and (2.9.5) of [22],

H 1,2
2,2

(
x
⏐⏐⏐ (1 − 2β, 1), (2(1 − θ ), 1)

(0, 1), (1 − 2θ, 1)

)
= H 1,1

1,1

(
x
⏐⏐⏐ (2(1 − θ), 1)

(0, 1)

)
= Γ (2θ − 1)(1 + x)1−2θ .

(b) When β < min(1, θ), by (2.10), we know that Eβ,θ (−|x |) is nonnegative, hence, for another
nonnegative constant C ′, one can reverse the inequality (5.2). This completes the proof of
Lemma 5.1. □
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Lemma 5.3 (Dalang’s Condition). Let Y (t, x) = Yα,β,γ,d (t, x) with α ∈ (0, 2], β ∈ (0, 2), and
γ > 0. The following two conditions are equivalent:

(i) d < 2α +
α

β
min(2γ − 1, 0)

⇐⇒ (ii)
∫ t

0
ds
∫
Rd

dy Y (s, y)2 < ∞, for all t > 0.

Proof. (i)⇒(ii): Fix an arbitrary t > 0. By the Plancherel theorem and (4.8), we only need to
prove that∫ t

0
ds
∫
Rd

dξ s2(β+γ−1) E2
β,β+γ (−sβ |ξ |α) < +∞. (5.5)

Notice that d > 0 and Condition (i) together imply that β + γ > 1/2; see also (2.7). Thus, we
can integrate ds first using Lemma 5.1(a). Then it reduces to prove that∫

Rd

1

1 + |ξ |
2α+

α
β

min(2γ−1,0)
dξ < +∞,

which is guaranteed by (i).

(ii)⇒(i): The case β ∈ (0, 1] can be proved in the same way as above by an application of
Lemma 5.1(b). The case β ∈ (1, 2) is trickier. Fix t > 0. Denote the integral in (5.5) by I (t).
Then by change of variables,

I (t) = C
∫ t

0
ds s2(β+γ−1)− βd

α

∫
∞

0
dy y

d
α−1 E2

β,β+γ (−y).

Note that the double integral is decoupled. The integrability of ds at zero implies that 2(β+γ )−
1 −

βd
α
> 0, which is equivalent to

d < 2α +
α

β
(2γ − 1). (5.6)

By the asymptotics of Eβ,β+γ (−y) at +∞ (see, e.g., Theorem 1.3 in [31]; note that the condition
β ∈ (1, 2) is used here), we see that there exist y0 > 0 and some constant C > 0 such that

E2
β,β+γ (−y) ≥

C
1 + y2 for all y ≥ y0.

Hence, the integrability of dy at zero and infinity implies the following conditions:

d/α − 1 > −1 and (d/α − 1) − 2 < −1. (5.7)

Combining (5.6) and (5.7) gives (i). This completes the proof of Lemma 5.3. □

5.2. Some continuity results on Y

This part contains some continuity results on Y . All the results proved in this part will be
used in the proof of Theorem 3.2. In particular, Proposition 5.4 will be used to prove the Hölder
continuity (Theorem 3.3).

Proposition 5.4. Suppose α ∈ (0, 2], β ∈ (0, 2), γ ≥ 0, and (1.9) holds. Then Y (t, x) =

Yα,β,γ,d (t, x) satisfies the following two properties:
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(i) For all 0 < θ < (Θ − d) ∧ 2 and T > 0, there is some nonnegative constant
C = C(α, β, γ, ν, θ, T, d) such that for all t ∈ (0, T ] and x, y ∈ Rd ,∫∫

[0,∞)×Rd
drdz (Y (t − r, x − z)− Y (t − r, y − z))2 ≤ C |x − y|

θ , (5.8)

(ii) If β ≤ 1 and γ ≤ ⌈β⌉ − β, then there is some nonnegative constant C = C(α, β, γ, ν, d)
such that for all s, t ∈ (0,∞) with s ≤ t , and x ∈ Rd ,∫ s

0
dr
∫
Rd

dz (Y (t − r, x − z)− Y (s − r, x − z))2 ≤ C(t − s)2(β+γ )−1−dβ/α ,

(5.9)

and ∫ t

s
dr
∫
Rd

dz Y 2 (t − r, x − z) ≤ C(t − s)2(β+γ )−1−dβ/α . (5.10)

Proof. (i) Fix t > 0. By Plancherel’s theorem and (4.8), the left hand side of (5.8) is equal to

1
(2π )d

∫ t

0
dr (t − r )2(β+γ−1)

∫
Rd

dξ E2
β,β+γ

(
−2−1ν(t − r )β |ξ |α

) ⏐⏐e−iξ ·x
− e−iξ ·y

⏐⏐2
=

2
(2π )d

∫
Rd

dξ (1 − cos(ξ · (x − y)))
∫ t

0
dr (t − r )2(β+γ−1) E2

β,β+γ

(
−2−1ν(t − r )β |ξ |α

)
≤

2
(2π )d

∫
Rd

dξ (1 − cos(ξ · (x − y)))
Cβ,γ,T

1 + |ξ |
2α+

α
β

min(0,2γ−1)

where we have applied Lemma 5.1 in the last step (see also the proof of Lemma 5.3). Denote
Θ := 2α +

α
β

min(0, 2γ − 1). Because 1 − cos(x) ≤ 2 ∧
(
x2/2

)
for all x ∈ R, we only need to

bound∫
Rd

dξ
2 ∧

[
|x − y| |ξ |/

√
2
]2

1 + |ξ |Θ
≤ C ′

(
|x − y|

−d
∫ √

2

0

ud+1

(1 + |x − y|
−1u)Θ

du

+ |x − y|
Θ−d

∫
∞

√
2

2
uΘ+1−d

du
)

The second integral on the right hand side of the above inequality is finite provided that Θ > d,
which is Dalang’s condition. By [30, 15.6.1], for some constant C > 0,∫ √

2

0

ud+1

(1 + |x − y|
−1u)Θ

du = C 2 F1(Θ, 2 + d, 3 + d; −
√

2|x − y|
−1),

which is true under the condition that d + 3 > d + 2 > 0. By [22, 2.9.15],∫ √
2

0

ud+1

(1 + |x − y|
−1u)Θ

du = C ′′ H 1,2
2,2

(
√

2|x − y|
−1
⏐⏐⏐ (−1 − d, 1), (1 − Θ, 1)

(0, 1), (−2 − d, 1)

)
.

Since ∆ = 0, by [22, Theorem 1.7], for all θ ∈ (0,min(Θ, 2 + d)),∫ √
2

0

ud+1

(1 + |x − y|
−1u)Θ

du = O(|x − y|
θ−d ), as |x − y| → 0.

Combining these cases, we have proved (i).
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(ii) Denote the left hand side of (5.9) by I . Apply Plancherel’s theorem and (4.8),

I = C∗

∫ s

0
dr
∫
Rd

dξ
⏐⏐⏐ (t − r )β+γ−1 Eβ,β+γ

(
−2−1ν(t − r )β |ξ |α

)
−(s − r )β+γ−1 Eβ,β+γ

(
−2−1ν(s − r )β |ξ |α

) ⏐⏐⏐2.
Then by Lemma 5.5,

I = C∗C♯

∫ s

0
dr
[
(t − r )2(β+γ−1)−dβ/α

+ (s − r )2(β+γ−1)−dβ/α]
−2C∗

∫ s

0
dr [(t − r )(s − r )]β+γ−1 H (r ),

where

H (r ) =

∫
Rd

Eβ,β+γ (−2−1ν(t − r )β |ξ |α)Eβ,β+γ (−2−1ν(s − r )β |ξ |α)dξ.

By (2.10) and t ≥ s,

H (r ) ≥

∫
Rd

E2
β,β+γ (−2−1ν(t − r )β |ξ |α)dξ

= (t − r )−2(β+γ−1)
∫
Rd

(t − r )2(β+γ−1) E2
β,β+γ (−2−1ν(t − r )β |ξ |α)dξ

= (t − r )−2(β+γ−1)
∫
Rd

Y (t − r, y)2dy

= C♯(t − r )−dβ/α,

where in the last step we have applied Lemma 5.5. Because β + γ ≤ 1, we see that∫ s

0
dr [(t − r )(s − r )]β+γ−1 H (r ) ≥ C♯

∫ s

0
dr (t − r )2(β+γ )−2−dβ/α.

Denote ρ := 2(β + γ ) − 1 − dβ/α. Note that ρ > 0 is implied by Dalang’s condition (1.9).
Therefore,

I ≤
C∗C♯

ρ

[
tρ − (t − s)ρ + sρ − 2(tρ − (t − s)ρ)

]
≤

C∗C♯

ρ
(t − s)ρ .

This proves (5.9). As for (5.10), by a similar reasoning, we have∫ t

s
dr
∫
Rd

dz Y 2 (t − r, x − z) ≤ CC♯

∫ t

s
dr (t − r )2(β+ν−1)−dβ/α

=
CC♯

ρ
(t − s)ρ .

This completes the proof of Proposition 5.4. □

The following lemma is a slight extension of [27, Lemma 1] from the case where γ = 1 − β

to a general γ .

Lemma 5.5. Assume that d < 2α, β ∈ (0, 2), and γ ≥ 0. Then∫
Rd

Y 2
α,β,γ,d (t, x)dx = C♯ t2(β+γ−1)−dβ/α,

for all t > 0, where

C♯ :=
2

Γ (d/2)(2πν)d/2

∫
∞

0
ud−1 E2

β,β+γ (−uα)du. (5.11)
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Proof. By Plancherel’s theorem and (4.8),∫
Rd

Y (t, x)2dx =
t2(β+γ−1)

(2π )d

∫
Rd

E2
β,β+γ (−2−1νtβ |ξ |α)dξ

=
2πd/2

Γ (d/2)
t2(β+γ−1)

(2π )d

∫
∞

0
rd−1 E2

β,β+γ (−2−1νtβrα)dr

=
2πd/2

Γ (d/2)
t2(β+γ−1)−dβ/α

(2π )d
(2/ν)d/2

∫
∞

0
ud−1 E2

β,β+γ (−uα)du.

Note that by the asymptotic property of the Mittag-Leffler function ([31, Theorem 1.7]), the last
integral is finite if d < 2α. □

The corresponding results to the next Proposition for the SHE, the SFHE, and the SWE can
be found in [7, Proposition 5.3], [8, Proposition 4.7], and [6, Lemma 3.2], respectively. We need
some notation: for τ > 0, α > 0 and (t, x) ∈ (0,∞) × Rd , denote

Bt,x,τ,α :=
{
(t ′, x ′) ∈ (0,∞) × Rd

: 0 ≤ t ′
≤ t + τ, |x − x ′

| ≤ α
}
.

Proposition 5.6. Suppose that β ∈ (0, 2) and γ ∈ [0, ⌈β⌉−β]. Then for all (t, x) ∈ (0,∞)×Rd ,
there exists a constant A > 0 such that for all (t ′, x ′) ∈ Bt,x,1/2,1 and all s ∈ [0, t ′) and y ∈ Rd

with |y| ≥ A, we have that Y
(
t ′

− s, x ′
− y

)
≤ Y (t + 1 − s, x − y).

Proof. Without loss of generality, assume that ν = 2.

Case I. We first prove the case where α = 2. The proof here simplifies the arguments of [4,
Proposition 6.1]. Fix (t, x) ∈ (0,∞) × Rd . By the scaling property and the asymptotic property
of Y , we have that

Y (t + 1 − s, x − y)
Y (t ′ − s, x ′ − y)

≈

(
t ′

− s
t + 1 − s

) f (β)
|x − y|

a

|x ′ − y|
a

× exp
(

b|x ′
− y|

c

(t ′ − s)βc/2 −
b|x − y|

c

(t + 1 − s)βc/2

)
,

as |y| → ∞, where the constants a, b and c are defined in (4.18), and

f (β) = 1 +
dβ
2

− β − ν +
aβ
2
.

Notice that

t + 1 − s
t ′ − s

= 1 +
t + 1 − t ′

t ′ − s
≥ 1 +

t + 1 − t ′

t ′
≥

t + 1
t + 1/2

= 1 +
1

2t + 1
> 1 . (5.12)

If f (β) ≤ 0, then(
t ′

− s
t + 1 − s

) f (β)

=

(
t + 1 − s

t ′ − s

)| f (β)|

≥ 1.

If f (β) > 0, then(
t ′

− s
t + 1 − s

) f (β)

≥

(
t ′

− s
t + 1

)| f (β)|

= (t + 1)−| f (β)| exp
(
| f (β)| log(t ′

− s)
)
.



5100 L. Chen, Y. Hu and D. Nualart / Stochastic Processes and their Applications 129 (2019) 5073–5112

The rest arguments are the same as the proof of [4, Proposition 6.1]. We will not repeat here.

Case II. Now we consider the case when α ∈ (0, 2). By the scaling property and the asymptotic
property of Y , we have that

Y (t + 1 − s, x − y)
Y (t ′ − s, x ′ − y)

≈

(
t ′

− s
t + 1 − s

)1−2β−ν (
|x ′

− y|

|x − y|

)d+α

,

as |y| → ∞. Because β > 1/2 and γ ≥ 0, we see that 1 − 2β − γ < 0. Hence, by (5.12),(
t ′

− s
t + 1 − s

)1−2β−ν

=

(
t + 1 − s

t ′ − s

)2β+ν−1

≥

(
1 +

1
2t + 1

)2β+ν−1

> 1.

On the other hand,
|x ′

− y|

|x − y|
≥

|y| − |x ′
|

|x | + |y|
≥

|y| − (|x ′
− x | + |x |)

|x | + |y|
≥

|y| − 1 + |x |

|x | + |y|
→ 1,

as |y| → ∞. Therefore, we can choose a large constant A, such that for all |y| ≥ A and all
(t ′, x ′) ∈ Bt,x,1/2,1 and s ∈ [0, t ′],

Y (t + 1 − s, x − y)
Y (t ′ − s, x ′ − y)

> 1.

This completes the proof of Proposition 5.6. □

Proposition 5.7. For all (t, x) ∈ [0,∞) × Rd , 1 < β < 2 and γ ∈ [0, 2 − β], we have

lim
(t ′,x ′)→(t,x)

∫∫
[0,∞)×Rd

dsdy
(
Y
(
t ′

− s, x ′
− y

)
− Y (t − s, x − y)

)2
= 0.

Proof. This proposition is a consequence of Proposition 5.6. The proof follows the same
arguments as the proof of [4, Proposition 6.4]. □

5.3. Estimations of the kernel function K

Let G : [0,∞) × Rd
↦→ R with d ∈ N, d ≥ 1 be a Borel measurable function.

Assumption 5.8. The function G : [0,∞) × Rd
↦→ R has the following properties:

(1) There is a nonnegative function G(t, x), called reference kernel function, and constants
C0 > 0, σ < 1 such that

G(t, x)2
≤

C0

tσ
G(t, x) , for all (t, x) ∈ [0,∞) × Rd . (5.13)

(2) The reference kernel function G(t, x) satisfies the following sub-semigroup property: for
some constant C1 > 0,∫

Rd
dy G (t, x − y)G (s, y) ≤ C1 G (t + s, x) , for all t, s > 0 and x ∈ Rd .

(5.14)

Assumption 5.9. The same as Assumption 5.8 except that the two “≤” in (5.13) and (5.14)
are replaced by “≥”. We call the property (5.14) with “≤” replaced by “≥” the super-semigroup
property.
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Proposition 5.10. Under conditions (1.9) and (1.11), the function Y (t, x) satisfies Assump-
tion 5.8 with the reference kernel Gα,β(t, x) defined in (3.7), two nonnegative constants C0 and
C1, depending on (α, β, γ, ν, d), and σ defined in (2.6).

Proof. The proof is similar to that of [4, Proposition 5.8]. We first note that σ < 1 is implied by
Dalang’s condition (1.9); see (2.7).

Case I. We first consider the case where α = 2. In this case,

Gα,β(t, x) =
(
4νπ tβ

)−d/2
exp

(
−

1
4ν

(
t−β/2

|x |
)⌊β⌋+1

)
.

Notice that
2

2 − β
> ⌊β⌋ + 1, for β ∈ (0, 1) ∪ (1, 2),

and when β = 1, the constant b defined in (4.18) reduces to 1/(2ν), which is bigger than 1/(4ν).
Hence, by (4.16) and (4.13), we see that

sup
(t,x)∈[0,∞)×Rd

Y (t, x)2

t−σG2,β(t, x)
= sup

y∈Rd

Y (1, y)2

G2,β(1, y)
=: C0 < ∞.

Note that in the application of (4.13) in the above equations we have used the fact that Dalang’s
condition (1.9) implies d < 2α. When β = 1, we see that

G2,1(t, x) = (4νπ t)−d/2 exp
(

−
|x |

2

4νt

)
,

and hence, C1 = 1 and (5.14) becomes equality in this case. When β ∈ (0, 1),

G2,β(t, x) =
(
4νπ tβ

)−d/2
exp

(
−

|x |

4νtβ/2

)
≤

d∏
i=1

(
4νπ tβ

)−1/2
exp

(
−

|xi |

4νtβ/2

)
.

Then by Lemma 5.10 of [4], for some nonnegative constant C1,∫
Rd

G2,β(t − s, x − y)G2,β(s, y)dy ≤ C1 G2,β(t, x).

When β ∈ (1, 2),

G2,β(t, x) =
(
4νπ tβ

)−d/2
exp

(
−

|x |
2

4νtβ

)
= G2,1(tβ, x).

Hence, by the semigroup property for the heat kernel,∫
Rd

G2,β(t − s, x − y)G2,β(s, y)dy = G2,1((t − s)β + sβ, x) ≤ 2d(1−β)G2,β(t, x),

where in the last step we have applied the inequalities:

21−β tβ ≤ (t − s)β + sβ ≤ tβ, for β ∈ (1, 2).

Hence, in this case, C1 = 2(1−β)d . Therefore, Assumption 5.8 is satisfied.

Case II. We now consider the case where α ̸= 2. In this case,

Gα,β(t, x) =
cn tβ/α(

t2β/α + |x |
2)(d+1)/2 = G p(tβ/α, x),
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where G p(t, x) is the Poisson kernel (see [35, Theorem 1.14]). By the scaling property and the
asymptotic property of Y (1, x) at 0 and ∞ shown in (4.13) and (4.16), for some nonnegative
constant C ,

Y (t, x) ≤
C tβ+γ−1−dβ/α(

1 + t−2β/α|x |
2)(d+α)/2 ≤

C tβ+γ−1−dβ/α(
1 + t−2β/α|x |

2)(d+1)/4 ,

where the second inequality is due to (d +α)/2 ≥ (d + 1)/4, which is equivalent to d ≥ 1 − 2α.
Hence,

sup
(t,x)∈[0,∞)×Rd

Y (t, x)2

t−σGα,β(t, x)
= sup

y∈Rd

Y (1, y)2

Gα,β(1, y)
=: C0 < ∞.

Then, it is ready to see that

Gα,β(t, x) = G p(tβ/α, x)

By the semigroup property of the Poisson kernel, we have that∫
Rd

Gα,β(t − s, x − y)Gα,β(s, y)dy = G p
(
sβ/α + (t − s)β/α, x

)
. (5.15)

Then use the inequalities

tβ/α ≤sβ/α + (t − s)β/α ≤ 21−β/αtβ/α if β/α ≤ 1,

21−β/αtβ/α ≤sβ/α + (t − s)β/α ≤ tβ/α if β/α > 1,
(5.16)

to conclude that for some constant C1 > 0,∫
Rd

Gα,β(t − s, x − y)Gα,β(s, y)dy ≤ C1G p
(
tβ/α, x

)
= C1Gα,β(t, x).

This completes the proof of Proposition 5.10. □

Proposition 5.11. Under (1.9) and the first two cases of (1.21), the function Y (t, x) satisfies
Assumption 5.9 with the reference kernel G

α,β
(t, x) defined in (3.8), two nonnegative constants

C0 and C1, depending on (α, β, γ, ν, d), and σ defined in (2.6).

Proof. The proof is similar to the proof of the previous proposition. We have several cases.

Case I: When α = 2 and β ∈ (0, 1), by the scaling property (4.12), and the asymptotics at zero
and infinity in (4.13) and (4.16), we see that

sup
(t,x)∈[0,∞)×Rd

t−σG2,β(t, x)

Y (t, x)2 = sup
y∈Rd

G2,β(1, y)

Y (1, y)2 =:
1

C0
< +∞. (5.17)

By the semigroup property of the heat kernel,∫
Rd

G
α,β

(t − s, x − y)G
α,β

(s, y)dy = G
α,β

(
(sβ + (t − s)β)1/β, x

)
≥ 2(β−1)d/2G

α,β
(t, x),

where the last inequality is due to

tβ ≤ (t − s)β + sβ ≤ 21−β tβ, for β ∈ (0, 1).
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Case II: When α < 2 and β ∈ (0, 1 ∨ α), by (4.12) and (4.16),

sup
(t,x)∈[0,∞)×Rd

t−σG
α,β

(t, x)

Y (t, x)2 = sup
y∈Rd

G
α,β

(1, y)

Y (1, y)2 =:
1

C0
< +∞.

The super-semigroup property can be proved in the same way from (5.15) and (5.16). □

5.4. A lemma on the initial data

Lemma 5.12. For all compact sets K ⊆ (0,∞) × Rd ,

sup
(t,x)∈K

([
1 + J 2

0

]
⋆K

)
(t, x) < ∞,

under the following two cases:

(1) Both (1.9) and (1.11) are satisfied and the initial data satisfy (3.1);
(2) Both (1.9) and (1.12) are satisfied and the initial data belong to Mα,β (R).

Proof. In both cases, the kernel function K(t, x) has the following upper bound

K(t, x; λ) ≤ C1Gα,β(t, x)
(
t−σ

+ eC2t) .
Part (1) is clear because([

1 + J 2
0

]
⋆K

)
(t, x) ≤ (1 + Ĉt )(1 ⋆K)(t, x) = C1(1 + Ĉt )

(
t1−σ

1 − σ
+

eC2t
− 1

C2

)
,

where σ < 1 (see (2.7)). The proof of part (2) requires more work. The case when α = 2 is
proved in Lemma 6.7 of [4]. The proof for α ∈ (0, 2) is similar to that of Lemma 4.9 in [8]. Let

Gα,β,d (t, x) = π−d/2tη−1
|x |

−d H 2,1
2,3

(
|x |

α

2α−1νtβ

⏐⏐⏐ (1, 1), (η, β)

(d/2, α/2), (1, 1), (1, α/2)

)
with η = ⌈β⌉ in case of Z and η = 1 in case of Z∗. Hence, we need only consider
J0(t, x) = (|µ| ∗ G(t, ·))(x). By the asymptotic properties both at infinity and at zero (see
Lemma 4.5 and Remark 4.4), we have that for all t ∈ (0, T ],

G(t, x) = tη−1−dβ/αG(1, t−β/αx) ≤
C tη−1−dβ/α

1 + |t−β/αx |
d+α

≤
C tη−1−dβ/α(1 ∨ T )dβ

1 + |x |
d+α

.

Thus, for s ∈ (0, t],

J0(s, y) ≤ ACsη−1−dβ/α(1 ∨ t)dβ,

where

A = sup
y∈R

∫
R

|µ|(dy)
1

1 + |x − y|
1+α

.

The rest of the proof follows line-by-line the proof of part (2) of Lemma 4.9 in [8]. This
completes the proof of Lemma 5.12. □

5.5. Proof of Theorem 3.2

Proof of Theorem 3.2. The proof is the same as the proof of [4, Theorem 3.1], which in turn
follows the same six steps as those in the proof of [7, Theorem 2.4] with some minor changes:



5104 L. Chen, Y. Hu and D. Nualart / Stochastic Processes and their Applications 129 (2019) 5073–5112

The proof relies on estimates on the kernel function K(t, x), which is given by Proposi-
tion 5.10.

In the Picard iteration scheme, one needs to check the L p(Ω )-continuity of the stochastic
integral. This will guarantee that the integrand in the next step is again in P2, via [7, Proposition
3.4]. Here, the statement of [7, Proposition 3.4] is still true by replacing in its proof [7,
Proposition 3.5] by either Proposition 5.4 for the slow diffusion equations or Proposition 5.7
for the fast diffusion equations, and replacing [7, Proposition 5.3] by Proposition 5.6.

In the first step of the Picard iteration scheme, the following property, which determines the
set of the admissible initial data, needs to be verified: for all compact sets K ⊆ [0,∞) × Rd ,

sup
(t,x)∈K

([
1 + J 2

0

]
⋆K

)
(t, x) < +∞.

For the SHE, this property is proved in [7, Lemma 3.9]. Here, Lemma 5.12 gives the desired
result with minimal requirements on the initial data. This property, together with the calculation
of the upper bound on K(t, x) in Theorem 3.4, guarantees that all the L p(Ω )-moments of u(t, x)
are finite. This property is also used to establish uniform convergence of the Picard iteration
scheme, hence L p(Ω )-continuity of (t, x) ↦→ I (t, x).

The proof of (3.4) is identical to that of the corresponding property in [7, Theorem 2.4]. This
completes the proof of Theorem 3.2. □

5.6. Proof of Theorem 3.1

Proof of Theorem 3.1. The proof of Theorem 3.1 is similar to that for Theorem 3.2. Because

Ĉt = sup
(s,x)∈[0,t]×Rd

|J0(s, x)| < ∞, for all t > 0,

the Picard iterations in the proof of Theorem 2.4 [7] give the following moment formula

||u(t, x)||2p ≤ 2J (t, x)2
+
[
ς2

+ 2Ĉ2
t

] (
1 ⋆ K̂p

)
(t, x).

Note that the function
(
1 ⋆Kp

)
(t, x) is a function of t only. For convenience, we denote it as

H (t; λ) :=

∫ t

0
ds
∫
Rd

dy K(s, y; λ). (5.18)

Therefore, we need only to prove that H (t; λ) is finite, which is proved in Lemma 5.13. This
completes the proof of Theorem 3.1. □

Lemma 5.13. For all α ∈ (0, 2], β ∈ (0, 2), γ ≥ 0, and d ∈ N, under Dalang’s condition (1.9),
we have that

H (t; λ) ≤ exp
(

Cλ
2

1−σ t
)
,

for all t > 0 and λ ∈ R, where σ is defined in (2.6) and C is some constant depending on α, β,
γ and d.

Proof. By Lemma 5.5,

(1 ⋆ L0)(t, x) ≤ C♯

∫ t

0
ds s2(β+γ−1)−dβ/α

=
C♯sθ

θ
,
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where C♯ is defined in (5.11) and θ = 1−σ . Note that θ > 0 is guaranteed by Dalang’s condition
(1.9). Now we claim that, for n ≥ 0,

(1 ⋆ Ln)(t, x) ≤
Cn+1
♯ Γ (θ)n+1 t (n+1)θ

Γ ((n + 1)θ + 1)
, (5.19)

of which the case n = 0 is just proved. Assume that (5.19) holds for n. By the above calculations,
we see that

(1 ⋆ Ln+1) (t, x) ≤
Cn+2
♯ Γ (θ)n+1

Γ ((n + 1)θ + 1)

∫ t

0
ds (t − s)(n+1)θ sθ =

Cn+2
♯ Γ (θ)n+2 t (n+2)θ

Γ ((n + 2)θ + 1)
.

Therefore,

H (t; λ) =

∞∑
n=0

λ2(n+1)(1 ⋆ Ln)(t, x) ≤ Eθ,θ+1
(
C♯Γ (θ )λ2tθ

)
.

Then apply the asymptotic property of the Mittag-Leffler function (see, e.g., [31, Theorem 1.3]).
This completes the proof of Lemma 5.13. □
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Appendix. Some properties of the Fox H-functions

In this section, we follow the notation of [22].

Definition A.1. Let m, n, p, q be integers such that 0 ≤ m ≤ q, 0 ≤ n ≤ p. Let ai , bi ∈ C
be complex numbers and let α j , β j be positive numbers, i = 1, 2, . . . , p; j = 1, 2, . . . , q . Let
the set of poles of the gamma functions Γ (b j + β j s) does not intersect with that of the gamma
functions Γ (1 − ai − αi s), namely,{

b jl =
−b j − l
β j

, l = 0, 1, . . .
}⋂{

aik =
1 − ai + k

αi
, k = 0, 1, . . .

}
= ∅

for all i = 1, 2, . . . , p and j = 1, 2, . . . , q. Denote

Hmn
pq (s) :=

∏m
j=1 Γ (b j + β j s)

∏n
i=1 Γ (1 − ai − αi s)∏p

i=n+1 Γ (ai + αi s)
∏q

j=m+1 Γ (1 − b j − β j s)
.

The Fox H-function

H m,n
p,q (z) ≡ H m,n

p,q

[
z
⏐⏐⏐⏐ (a1, α1) · · · (ap, αp)

(b1, β1) · · · (bq , βq )

]
is defined by the following integral

H mn
pq (z) =

1
2π i

∫
L
Hmn

pq (s)z−sds , z ∈ C , (A.1)

where an empty product in (A.1) means 1, and L in (A.1) is the infinite contour which separates
all the points b jl to the left and all the points aik to the right of L . Moreover, L has one of the
following forms:

(1) L = L−∞ is a left loop situated in a horizontal strip starting at point −∞ + iφ1 and
terminating at point −∞ + iφ2 for some −∞ < φ1 < φ2 < ∞
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(2) L = L+∞ is a right loop situated in a horizontal strip starting at point +∞ + iφ1 and
terminating at point ∞ + iφ2 for some −∞ < φ1 < φ2 < ∞

(3) L = L iγ∞ is a contour starting at point γ − i∞ and terminating at point γ + i∞ for some
γ ∈ (−∞,∞)

According to [22, Theorem 1.1], the integral (A.1) exists, for example, when

∆ :=

q∑
j=1

β j −

p∑
i=1

αi ≥ 0 and L = L−∞, (A.2)

or when

a∗
:=

n∑
i=1

αi −

p∑
i=n+1

αi +

m∑
j=1

β j −

q∑
j=m+1

β j ≥ 0 and L = L iγ∞. (A.3)

The following two parameters of the Fox H-functions (A.1) will be used in this paper:

µ =

q∑
j=1

b j −

p∑
i=1

ai +
p − q

2
, (A.4)

and

δ =

p∏
i=1

α
−αi
i

q∏
j=1

β
β j
j . (A.5)

Lemma A.2. For b ∈ C and β > 0, there holds the relation

H 2+m,n
p,2+q

(
z
⏐⏐⏐ (ai , αi )1,p

(b, β), (b + 1/2, β), (b j , β j )1,q

)
= 21−2b√π H 1+m,n

p,1+q

(
4β z

⏐⏐⏐ (ai , αi )1,p

(2b, 2β), (b j , β j )1,q

)
and

H m,n
p,2+q

(
z
⏐⏐⏐ (ai , αi )1,p

(b j , β j )1,q , (b, β), (b + 1/2, β)

)
= 4−bπ−1/2 H 1+m,n

p,1+q

(
4β z

⏐⏐⏐ (ai , αi )1,p

(b j , β j )1,q , (2b, 2β)

)
.

Proof. Let

H(s) =

∏m
j=1 Γ (b j + β j s)

∏n
i=1 Γ (1 − ai − αi s)∏p

i=n+1 Γ (ai + αi s)
∏q

j=m+1 Γ (1 − b j − β j s)
.

By the definition of the Fox H-function,

H 2+m,n
p,2+q

(
z
⏐⏐⏐ (ai , αi )1,p

(b, β), (b + 1/2, β), (b j , β j )1,q

)
=

1
2π i

∫
L
H(s)Γ (b + βs)Γ (b + 1/2 + βs)z−sds.

By the duplication rule of the Gamma function [30, 5.5.5 on p. 138]

Γ (z)Γ (z + 1/2) =
√
π21−2zΓ (2z), 2z ̸= 0,−1,−2, . . . , (A.6)

we have that

H 2+m,n
p,2+q

(
z
⏐⏐⏐ (ai , αi )1,p

(b, β), (b + 1/2, β), (b j , β j )1,q

)
= 21−2b√π

1
2π i

∫
L
H(s)Γ (2b + 2βs)(4β z)−sds.

Then apply the definition of the Fox H-function. The second relation can be proved similarly. □
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Here are some direct consequences of this lemma:

H 1+m,n
1+p,1+q

(
z
⏐⏐⏐ (ai , αi )1,p, (b, β)

(2b, 2β), (b j , β j )1,q

)
= 22b−1π−1/2 H 1+m,n

p,1+q

(
4β z

⏐⏐⏐ (ai , αi )1,p

(1/2 + b, β), (b j , β j )1,q

)
,

H 1+m,n
1+p,1+q

(
z
⏐⏐⏐ (ai , αi )1,p, (1/2 + b, β)

(2b, 2β), (b j , β j )1,q

)
= 22b−1π−1/2 H 1+m,n

p,1+q

(
4β z

⏐⏐⏐ (ai , αi )1,p

(b, β), (b j , β j )1,q

)
,

H m,1+n
1+p,1+q

(
z
⏐⏐⏐ (1/2 + b, β), (ai , αi )1,p

(b j , β j )1,q , (2b, 2β)

)
= 4bπ1/2 H m,n

p,1+q

(
4−β z

⏐⏐⏐ (ai , αi )1,p

(b j , β j )1,q , (b, β)

)
,

H m,1+n
1+p,1+q

(
z
⏐⏐⏐ (1/2 + b, β), (ai , αi )1,p

(b j , β j )1,q , (2b, 2β)

)
= 4bπ1/2 H m,n

p,1+q

(
4−β z

⏐⏐⏐ (ai , αi )1,p

(b j , β j )1,q , (b, β)

)
.

Remark A.3. In [4], the Green function Gβ(t, x), which corresponds to Y2,β,⌈β⌉−β,1(t, x), is
represented using the two-parameter Mainardi function of order λ ∈ [0, 1) (see (4.25)). By the
series expansion of the Fox H-function ([22, Theorem 1.3], which requires that ∆ = 1 − λ > 0),
one can see that

Mλ,µ(z) = z−1 H 1,0
1,1

(
z
⏐⏐⏐ (µ, λ)

(1, 1)

)
, λ ∈ [0, 1). (A.7)

By Property 2.4 of [22], the above relation can also be written as

H 1,0
1,1

(
z2
⏐⏐⏐ (µ, λ)

(1, 2)

)
=

z
2

Mλ/2,µ(z), λ ∈ [0, 1). (A.8)

Remark A.4. Another commonly used special function in this setting, such as in [32], is
Wright’s function [38–40] (see also [25, Appendix F]):

φ(λ,µ; z) :=

∞∑
k=0

zk

k!Γ (µ+ λk)
, for λ > −1, µ ∈ C. (A.9)

We adopt the notation φ that is used by E. M. Wright in his original papers. By (2.9.29) and
Property 2.5 of [22],

φ(λ,µ; z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z−1 H 1,0

0,2

(
z

⏐⏐⏐⏐⏐ [−1.0em](1, 1), (1 + λ− µ, λ)

)
if λ > 0,

z−1 H 1,0
1,1

(
z
⏐⏐⏐ (µ− λ,−λ)

(1, 1)

)
if λ ∈ (−1, 0].

(A.10)

Comparing (A.7) and (A.10), we see that

Mλ,µ(z) = φ(−λ,µ− λ; z), for λ ∈ (0, 1]. (A.11)

The following theorem is a simplified version of Theorems 2.9 and 2.10 in [23], which is
sufficient for our use in the proof of Theorem 4.6.

Theorem A.5. Let (a∗

1 ,∆1, µ1) and (a∗

2 ,∆2, µ2) be the constants (a∗,∆, µ) defined in (A.3),
(A.2) and (A.4) for the following two Fox H-functions:

H m,n
p,q

(
x
⏐⏐⏐ (ai , αi )1,p

(b j , β j )1,q

)
and H M,N

P,Q

(
x
⏐⏐⏐ (di , δi )1,P

(c j , γ j )1,Q

)
,
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respectively. Denote

A1 = min
1≤i≤n

1 − Re(ai )
αi

, B1 = min
1≤ j≤m

Re(b j )
β j

,

A2 = min
1≤ j≤M

Re(c j )
γ j

, B2 = min
1≤i≤N

1 − Re(di )
δi

,

with the convention that min(φ) = +∞. If either of the following four conditions holds

(1) a∗

1 > 0 and a∗

2 > 0;
(2) a∗

1 = ∆1 = 0, Re(µ1) < −1 and a∗

2 > 0;
(3) a∗

2 = ∆2 = 0, Re(µ2) < −1 and a∗

1 > 0;
(4) a∗

1 = ∆1 = 0, Re(µ1) < −1 and a∗

2 = ∆2 = 0, Re(µ2) < −1,

and if

A1 + B1 > 0, A2 + B2 > 0, A1 + A2 > 0, B1 + B2 > 0, (A.12)

then, for all z > 0, x ∈ R,

H m+M,n+N
p+P,q+Q

(
zx
⏐⏐⏐ (ai , αi )1,n, (di , δi )1,P , (ai , αi )n+1,p

(b j , β j )1,m , (c j , γ j )1,Q , (b j , β j )m+1,q

)
=

∫
∞

0
H m,n

p,q

(
zt
⏐⏐⏐ (ai , αi )1,p

(b j , β j )1,q

)
H M,N

P,Q

(
x
t

⏐⏐⏐ (di , δi )1,P

(c j , γ j )1,Q

)
dt
t
.

Proof. By Property 2.3 of [23],

H M,N
P,Q

(
x
t

⏐⏐⏐ (di , δi )1,P

(c j , γ j )1,Q

)
= H N ,M

Q,P

(
t
x

⏐⏐⏐ (1 − c j , γ j )1,Q

(1 − di , δi )1,P

)
. (A.13)

If condition (1) holds, one can apply Theorem 2.9 of [23] with η = 0, σ = 1, w = 1/x , and with
the following replacements: N → M , M → N , P → Q, Q → P , c j → 1 − c j , di → 1 − di .
If either of conditions (2)–(4) holds, we apply Theorem 2.10 of [23] in the same way. Note that
the parameters µ for both Fox H-functions in (A.13) are equal. □

A.1. Proof of Lemma 4.3

Proof of Lemma 4.3. Let

f (x) = H 2,1
2,3

(
x
⏐⏐⏐ (1, 1), (η, β)

(d/2, α/2), (1, 1), (1, α/2)

)
.

Then g(x) = x−d f (xα). Let

Hd,α,β,η(s) :=
Γ (d/2 + αs/2)Γ (1 + s)Γ (−s)

Γ (η + βs)Γ (−αs/2)
.

Denote the poles of Γ (1 + s) and Γ (d/2 + αs/2) by

A := {−(1 + k) : k = 0, 1, 2, . . .} and B :=

{
−

2l + d
α

: l = 0, 1, 2, . . .
}
,

respectively. According to the definition of Fox H-function, to calculate the asymptotic at zero,
we need to calculate the residue of Hd,α,β,η(s)z−s at the rightmost poles in A ∪ B. Because
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a∗
= 2 − β > 0, all the nigh cases are covered by either (1.8.1) or (1.8.2) of [23]. The notation

h∗

jl below follows from (1.3.5) of [23].

Case 1. Assume that η ̸= β and d/α > 1. In this case, the rightmost residue in A ∪ B is at
s = −1 and it is a simple pole. Hence,

h∗

20 =
Γ ((d − α)/2)

Γ (η − β)Γ (α/2)
> 0,

and

f (x) = h∗

20x + O
(
xmin(2,d/α)) , as x → 0+.

Case 2. Assume that η ̸= β and d/α = 1. The rightmost residue in A ∪ B is at s = −1 and it
is of order two. Hence,

Res
s=−1

(Hd,d,β,η(s)x−s) = lim
s→−1

[
(s + 1)2 Hd,d,β,η(s)x−s]′

= lim
s→−1

([
(s + 1)2 Hd,d,β,η(s)

]′
− (s + 1)2 Hd,d,β,η(s) log x

)
x−s

= Cx −
1

Γ (η − β)Γ (1 + d/2)
x log x,

where we have used the fact that Γ (x) has simple poles at x = −n, n = 0, 1, . . . , with residue
(−1)n

n!
. Therefore,

f (x) = −
1

Γ (η − β)Γ (1 + d/2)
x log x + O(x), as x → 0+.

Case 3. Assume that η ̸= β and d/α < 1. The rightmost residue in A ∪ B is at s = −d/α and
it is a simple pole. Hence,

h∗

10 =
2
α

Γ (1 − d/α)Γ (d/α)
Γ (η − dβ/α)Γ (d/2)

> 0, (A.14)

where the nonnegativity is due to the fact that η ≥ β > βd/α. Therefore,

f (x) = h∗

10xd/α
+ O(xmin((d+2)/α,1)) = h∗

10xd/α
+ O(x), as x → 0+.

Case 4. Assume that η = β = 1. By Property 2.2 of [23],

f (x) = H 1,1
1,2

(
x
⏐⏐⏐ (1, 1)

(d/2, α/2), (1, α/2)

)
.

Hence,

h∗

10 =
2Γ (d/α)
αΓ (d/2)

̸= 0,

and

f (x) = h∗

10xd/α
+ O(x (d+2)/α), as x → 0+.

Case 5. Assume that η = β ̸= 1 and d/α > 2. The rightmost residue in A ∪ B is at s = −1, but
this residue is vanishing because lims→−1 1/Γ (β+βs) = 0. The rightmost nonvanishing residue
in A ∪ B is at s = −2 and it is a simple pole. Hence,

h∗

21 = −
Γ ((d − 2α)/2)
Γ (−β)Γ (α)

.
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Hence,

f (x) = h∗

21x2
+ O(xmin(3,d/α)), as x → 0+.

Case 6. Assume that η = β ̸= 1 and d/α = 2. As in Case 6, the rightmost nonvanishing residue
in A ∪ B is at s = −2, and it is of order two. Then

Res
s=−2

(Hd,d/2,β,β(s)x−s) = lim
s→−2

[
(s + 2)2 Hd,d/2,β,β(s)x−s]′

= lim
s→−2

([
(s + 2)2 Hd,d/2,β,β(s)

]′
− (s + 2)2 Hd,d/2,β,β(s) log x

)
x−s

= Cx2
+

2
Γ (−β)Γ (1 + d/2)

x2 log x .

Therefore,

f (x) =
2

Γ (−β)Γ (1 + d/2)
x2 log x + O(x3), as x → 0+.

Case 7. Assume that η = β ̸= 1 and d/α ∈ (1, 2). As in Case 6, because h∗

20 ≡ 0, the rightmost
nonvanishing residue in A ∪ B is at s = −d/α, and it is a simple pole. Hence,

f (x) = h∗

10xd/α
+ O(x2), as x → 0+,

where h∗

10 is defined in (A.14) with η replaced by β.

Case 8. Assume that η = β ̸= 1 and d/α = 1. The rightmost nonvanishing residue in A ∪ B is
at s = −1, and it is of order two. Hence,

Res
s=−1

(Hd,d,β,β(s)x−s) = lim
s→−1

[
(s + 1)2 Hd,d,β,β(s)x−s]′

= lim
s→−1

[
H1(s)′H2(s) + H1(s)H2(s)′ − H1(s)H2(s) log x

]
x−s,

where

H1(s) = (s + 1)2Γ ((1 + s)d/2)Γ (1 + s) and H2(s) =
Γ (−s)

Γ (β + βs)Γ (−ds/2)
.

As calculated in the proof of Lemma 7.1 of [9], we have that

H1(−1) = lim
s→−1

H∗

1(s) =
2
d

= lim
s→−1

(1 + s)2

((1 + s)d/2)(1 + s)
=

2
d
,

H2(−1) = lim
s→−1

H∗

2(s) = 0,

d
ds

H2(s)
⏐⏐⏐⏐
s=−1

= lim
s→−1

Γ (−s)
Γ (−ds/2)

(
1

Γ (β(1 + s))

)′

=
Γ (1)

Γ (d/2)
lim

s→−1
−
ψ(β(1 + s))
Γ (β(1 + s))

=
β

Γ (d/2)
,

where ψ(z) is the digamma function and the last limit is due to (5.7.6) and (5.7.1) of [30].
Therefore,

Res
s=−1

(Hd,d,β,β(s)x−s) =
β

Γ (1 + d/2)
x,
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and

f (x) =
β

Γ (1 + d/2)
x + O(x2), as x → 0+.

Case 9. Assume that η = β ̸= 1 and d/α < 1. The first nonvanishing residue in A ∩ B is at
s = −d/α and it is a simple pole. Hence,

f (x) = h∗

10xd/α
+ O(x), as x → 0+,

where h∗

10 is defined in (A.14) with η replaced by β. This completes the whole proof of
Lemma 4.3. □

References

[1] L. Bertini, N. Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence, J. Stat. Phys. 78
(5–6) (1995) 1377–1401.

[2] R.A. Carmona, S.A. Molchanov, Parabolic Anderson problem and intermittency, Mem. Amer. Math. Soc. 108
(518) (1994) viii+125.

[3] L. Chen, Moments, Intermittency, and Growth Indices for Nonlinear Stochastic PDE’s with Rough Initial
Conditions (Ph.D. thesis), École Polytechnique Fédérale de Lausanne, 2013.

[4] L. Chen, Nonlinear stochastic time-fractional diffusion equations on R: moments, Hölder regularity and intermit-
tency, Trans. Amer. Math. Soc. 369 (12) (2017) 8497–8535.

[5] L. Chen, R.C. Dalang, Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions,
Stoch. Partial Differ. Equ. Anal. Comput. 2 (3) (2014) 316–352.

[6] L. Chen, R.C. Dalang, Moment bounds and asymptotics for the stochastic wave equation, Stochastic Process. Appl.
125 (4) (2015) 1605–1628.

[7] L. Chen, R.C. Dalang, Moments and growth indices for nonlinear stochastic heat equation with rough initial
conditions, Ann. Probab. 43 (6) (2015) 3006–3051.

[8] L. Chen, R.C. Dalang, Moments, intermittency, and growth indices for the nonlinear fractional stochastic heat
equation, Stoch. Partial Differ. Equ. Anal. Comput. 3 (3) (2015) 360–397.

[9] L. Chen, Y. Hu, G. Hu, J. Huang, Stochastic time-fractional diffusion equations on Rd , Stochastics 89 (1) (2017)
171–206.

[10] L. Chen, Y. Hu, D. Nualart, Regularity and strict positivity of densities for the nonlinear stochastic heat equation.
Preprint, arXiv:1611.03909.

[11] X. Chen, Y. Hu, J. Song, X. Song, Temporal asymptotics for fractional parabolic anderson model, Electron. J.
Probab. 23 (14) (2018) 1–39.

[12] L. Chen, K. Kim, On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional
heat equations, Ann. Inst. Henri Poincaré Probab. Stat. 53 (1) (2017) 358–388.

[13] Z.Q. Chen, K.H. Kim, P. Kim, Fractional time stochastic partial differential equations, Stochastic Process. Appl.
125 (4) (2015) 1470–1499.

[14] D. Conus, M. Joseph, D. Khoshnevisan, S.-Y. Shiu, Intermittency and chaos for a nonlinear stochastic wave
equation in dimension 1, in: Malliavin Calculus and Stochastic Analysis, Springer, 2013, pp. 251–279.

[15] D. Conus, M. Joseph, D. Khoshnevisan, S.-Y. Shiu, Initial measures for the stochastic heat equation, Ann. Inst.
Henri Poincaré Probab. Stat. 50 (1) (2014) 136–153.

[16] R.C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous
s.p.d.e.’s, Electron. J. Probab. 4 (6) (1999) 29.

[17] L. Debbi, M. Dozzi, On the solutions of nonlinear stochastic fractional partial differential equations in one spatial
dimension, Stochastic Process. Appl. 115 (11) (2005) 1764–1781.

[18] K. Diethelm, The Analysis of Fractional Differential Equations, in: Lecture Notes in Mathematics, vol. 2004,
Springer-Verlag, Berlin, 2010.

[19] S. Eidelman, A. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations 199 (2)
(2004) 211–255.

[20] M. Foondun, D. Khoshnevisan, Intermittence and nonlinear parabolic stochastic partial differential equations,
Electron. J. Probab. 14 (21) (2009) 548–568.

[21] G. Hu, Y. Hu, Fractional diffusion in Gaussian noisy environment, Mathematics 3 (2) (2015) 131–152.

http://refhub.elsevier.com/S0304-4149(19)30047-X/sb1
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb1
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb1
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb2
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb2
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb2
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb3
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb3
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb3
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb4
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb4
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb4
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb5
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb5
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb5
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb6
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb6
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb6
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb7
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb7
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb7
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb8
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb8
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb8
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb9
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb9
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb9
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://arxiv.org/abs/1611.03909
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb11
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb11
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb11
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb12
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb12
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb12
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb13
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb13
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb13
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb14
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb14
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb14
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb15
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb15
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb15
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb16
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb16
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb16
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb17
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb17
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb17
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb18
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb18
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb18
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb19
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb19
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb19
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb20
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb20
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb20
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb21


5112 L. Chen, Y. Hu and D. Nualart / Stochastic Processes and their Applications 129 (2019) 5073–5112

[22] A.A. Kilbas, M. Saigo, H-transforms: theory and applications, in: Analytical Methods and Special Functions, Vol.
9, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[23] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-
Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.

[24] A. Kochubeı̆, Diffusion of fractional order. (Russian), Differ. Uravn. 26 (4) (1990) 660–670, 733–734; translation
in Differential Equations 26 (1990), no. 4, 485–492.

[25] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
[26] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space–time fractional diffusion equation,

Fract. Calc. Appl. Anal. 4 (2) (2001) 153–192.
[27] J.B. Mijena, E. Nane, Space–time fractional stochastic partial differential equations, Stochastic Process. Appl. 125

(9) (2015) 3301–3326.
[28] J.B. Mijena, E. Nane, Intermittence and time fractional stochastic partial differential equations, Potential Anal. 44

(2) (2016) 295–312.
[29] C. Mueller, On the support of solutions to the heat equation with noise, Stoch. Stoch. Rep. 37 (4) (1991) 225–245.
[30] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, U.S.

Department of Commerce National Institute of Standards and Technology, Washington, DC, 2010.
[31] I. Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering, vol. 198, Academic

Press Inc., San Diego, CA, 1999.
[32] A.V. Pskhu, The fundamental solution of a diffusion-wave equation of fractional order. (Russian), Izv. Ross. Akad.

Nauk Ser. Mat. 73 (2) (2009) 141–182, translation in Izv. Math. 73 (2009), no. 2, 351–392.
[33] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon

and Breach Science Publishers, Yverdon, 1993, Edited and with a foreword by S. M. Nikol’skiı̆, Translated from
the 1987 Russian original, Revised by the authors.

[34] W.R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expo. Math. 14 (1) (1996) 3–16.
[35] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, in: Princeton Mathematical Series, vol.

32, Princeton University Press, Princeton, N. J., 1971.
[36] J.B. Walsh, An introduction to stochastic partial differential equations, in: École d’été de Probabilités de Saint-

Flour, XIV—1984, in: Lecture Notes in Math, vol. 1180, Springer, Berlin, 1986, pp. 265–439.
[37] D.V. Widder, The Laplace Transform, in: Princeton Mathematical Series, vol. 6, Princeton University Press,

Princeton, N. J., 1941.
[38] E.M. Wright, On the coefficients of power series having exponential singularities, J. Lond. Math. Soc. 8 (1) (1933)

71–79.
[39] E.M. Wright, The asymptotic expansion of the generalized Bessel function, Proc. Lond. Math. Soc. 38 (1934)

257–270.
[40] E.M. Wright, The generalized Bessel function of order greater than one, Quart. J. Math. Oxford Ser. 11 (1940)

36–48.

http://refhub.elsevier.com/S0304-4149(19)30047-X/sb22
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb22
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb22
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb23
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb23
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb23
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb24
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb24
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb24
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb25
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb26
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb26
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb26
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb27
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb27
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb27
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb28
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb28
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb28
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb29
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb30
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb30
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb30
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb31
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb31
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb31
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb32
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb32
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb32
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb33
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb33
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb33
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb33
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb33
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb34
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb35
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb35
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb35
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb36
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb36
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb36
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb37
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb37
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb37
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb38
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb38
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb38
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb39
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb39
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb39
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb40
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb40
http://refhub.elsevier.com/S0304-4149(19)30047-X/sb40

	Nonlinear stochastic time-fractional slow and fast diffusion equations on R d
	Introduction
	Existence and uniqueness
	Holder regularity
	Moment Lyapunov exponents and intermittency
	Some comments

	Some preliminaries and notation
	Main results
	Fundamental solutions
	Some special cases
	Proof of  Theorem 4.1 
	Nonnegativity of the fundamental solutions (proof of  Theorem 4.6 )

	Proofs of  ??
	Dalang's condition
	Some continuity results on Y
	Estimations of the kernel function K
	A lemma on the initial data
	Proof of  Theorem 3.2 
	Proof of  Theorem 3.1 

	Acknowledgment
	Appendix. Some properties of the Fox H-functions
	Proof of  Lemma 4.3 

	References


